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What is this all about?
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally F;, today also elliptic curves)
» an element ¢ € G of prime order p

2/24



Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally F;, today also elliptic curves)
» an element ¢ € G of prime order p

Alice public Bob
a & {0...p—1} b & {0...p—1}
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally F;, today also elliptic curves)
» an element ¢ € G of prime order p

Alice public Bob
a &2 00, p—1}) b & 10...p—1}
81><)gb
si= (') 5= (g7)

Fundamental reason this works: - and -’ are commutative!
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally F;, today also elliptic curves)
» an element ¢ € G of prime order p

Fundamental reason this works: - and -’ are commutative!

2/24



Quantum cryptoapocalypse

» Diffie-Hellman relies on the Discrete Logarithm Problem
being hard.

» Read: taking (discrete) logarithms should be much slower
than exponentiating.

» Shor’s quantum algorithm solves the discrete logarithm
problem in polynomial time.

» Read: with access to a quantum computer, taking discrete
logarithms is about as fast as exponentiation.

» Quantum computers that are sufficiently large and stable
do not yet exist (probably).

» But they are likely to be only a few years away...
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Graph walking Diffie-Hellman?
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Graph walking Diffie-Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

We're going to do maths.
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Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.
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An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” points.
» The neutral element is occ.
» The inverse of (x,y) is (x, —y).
» The sum of (x1,y1) and (xp,y») is easy to compute.
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Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” points.
» The neutral element is oco.
» The inverse of (x,y) is (x, —y). %
» The sum of (x1,y1) and (x2,y2) is
(A2 = x1 — 22, M2x1 + 22 — A\?) — 1)

Sx% +a
2]/1

where A = 2% if x; £ x; and A =

o otherwise.
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Maths background #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Maths background #2: Isogenies (edges)

» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is
Em| = Z/m x Z/m.
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Maths background #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
{» =x+ax+b} — {y*=x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Maths background #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

{(P=2>+x} — {=x>-3x+3}
over Fy;. Its kernel is {(2,9), (2, —9), co}.
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An isogeny of elliptic curves is a non-zero map E — E’ that is:
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The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).
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Maths background #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by o ¢ = ¢ 0 o = [deg ¢].
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Maths background #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.
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Maths background #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients of its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Vélu '71:
Formulas for computing E/G and evaluating ¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.
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Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Maths background #5: Supersingular isogeny graphs

Let p be a prime and g a power of p.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)2.
~ easy way to control the group structure by choosing p!
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Maths background #5: Supersingular isogeny graphs

Let p be a prime and g a power of p.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)2.
~ easy way to control the group structure by choosing p!

Our supersingular isogeny graph over F,» will consist of:

» vertices given by supersingular elliptic curves (up to
isomorphism),

» edges given by equivalence classes! of 2 and 3-isogenies,
both defined over F .

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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Graph-walking Diffie-Hellman?

The isogeny graph looks like this:
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Now:

SIDH

Supersingular Isogeny Diffie-Hellman

De Feo, Jao, Pltt 2011
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Diffie-Hellman: High-level view

g > 8"
gb ga*b
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SIDH: High-level view

E o sy EJA
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SIDH: High-level view

E o E/A
B ®pr
E/B ———— E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.
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SIDH: High-level view

E & E/A
B ®p!
E/B ———— E/(A,B)

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := p(A). (Similar for Bob.)

vV v.vY
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SIDH: High-level view

E & E/A
¥B ®p!
E/B ———— E/(A,B)

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := p(A). (Similar for Bob.)

vV V. v vY

They both compute the shared secret
(E/B)JA = E/(A,B) = (E/A)/B.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).

Alice knows only A, Bob knows only ¢p. Hm.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

,,,,, ()DB””> A/
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

,,,,, (pB,,,,> A/

P ¢5(P)

» Alice picks A as (P + [a]Q) for fixed public P,Q € E.
» Bob includes ¢3(P) and ¢5(Q) in his public key.
—> Now Alice can compute A" as (¢p(P) + [a]os(Q))!
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SIDH in one slide

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢a(Qs) E/B, ¢5(Pa), ¢5(Qa)

e T
A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Pg) + [b]pa(Qs))
s .= j((E/B)/A") s:=j((E/A)/B)

Attack by: given public info, find secret key—p4 or just A.
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Torsion-point attacks on SIDH

‘Breaking SIDH’ means:

Given

> supersingular public elliptic curves Eo/F,» and E4 /F
connected by a secret 2""-degree isogeny ¢4 : Eg — E,
and

» the action of ¢4 on the 3" -torsion of E,

finding the secret key recover ¢4.
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> supersingular public elliptic curves Eo/F,» and E4 /F
connected by a secret 2""-degree isogeny ¢4 : Eg — E,
and

» the action of ¢4 on the 3" -torsion of E,

finding the secret key recover ¢4.

2016 Galbraith, Petit, Shani, Ti: knowledge of End(Ej) and
End(E,) is sufficient to efficiently break it.

2017 Petit: If Eg : y*> = x®> + x and 3" > 24" > p*, then we can
construct non-scalar # € End(E4) and efficiently break it.

But in SIDH, 3" ~ 2" ~  /p.
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Torsion-point attacks on SIDH

‘Breaking SIDH’ means:

Given

> supersingular public elliptic curves Eo/F,» and E4 /F
connected by a secret D-degree isogeny ¢, : Eg — E4, and

» the action of ¢4 on the T-torsion of Ej,

finding the secret key recover ¢,.

2016 Galbraith, Petit, Shani, Ti: knowledge of End(E) and
End(E,) is sufficient to efficiently break it.

2017 Petit: If Eg : y* = x> + xand T > D* > p*, then we can
construct non-scalar § € End(E4) and efficiently break it.

Butin SIDH, T ~ D ~ ,/p.
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

Eo/w\

\/E

A
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https://eprint.iacr.org/2019/1333

From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

PA
L/\ EO / \

A4 — /E

PA

» We can choose ¢ € EHd(EQ) (for simplicity: of trace zero).
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

~ " P
L

E 0=gi0L0fa (+[a]
~—

» We can choose ¢ € EHd(EQ) (for simplicity: of trace zero).
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

z//\ / o \ < 5105

_ Eo

» We can choose ¢ € EH(l(EQ) (for simplicity: of trace zero).
» Know the action of 4 (and ) on the T-torsion.
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

z//\ / o \

P N
\\/YEO E\ffg\OIO;,\(HnJ)

» We can choose ¢ € EH(l(EQ) (for simplicity: of trace zero).
» Know the action of 4 (and ) on the T-torsion.
» Know: deg(#) = D?deg(r) + n?.
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

z//\ / o \

_ Eo

We can choose © € EH(l(EQ) (for simplicity: of trace zero).
Know the action of ¢4 (and ©4) on the T-torsion.
Know: deg(0) = D? deg(s) + n?.

If there exist t,n  such that deg(f) = T , then can
completely determine 6, and ¢4.

vV vyVvYyy
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

z//\EO/Y\\

\_~

We can choose © € EH(l(EQ) (for simplicity: of trace zero).
Know the action of ¢4 (and ©4) on the T-torsion.
Know: deg(0) = D? deg(s) + n?.

If there exist ¢, n, € such that deg(f) = €T , then can
completely determine 6, and ¢4, in time

O(Ve - polylog(p)).

vV vyVvYyy
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D* > p*:
finding the secret isogeny 4 of degree D.

Z/AEO/;\\

\_~

We can choose © € EH(l(EQ) (for simplicity: of trace zero).
Know the action of ¢4 (and ©4) on the T-torsion.
Know: deg(0) = D? deg(s) + n?.

If there exist ¢, n, € such that deg(f) = €T , then can
completely determine 6, and ¢4, in time

O(Ve - polylog(p))-

» We can heuristically do this for polynomially small e when
T>D*>pt~

vV vyVvYyy
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D? > p*:
finding the secret isogeny ¢4 of degree D.

' — . \

_ Eo

We can choose © € EH(l(EQ) (for simplicity: of trace zero).
Know the action of ¢4 (and ©4) on the T-torsion.
Know: deg(0) = D? deg(s) + n?.

If there exist ¢, 71, € such that deg(f) = T2, then can
completely determine 6, and ¢4, in time

O(Ve - polylog(p))-

» We can heuristically do this for polynomially small e when
T > D? > p**

vV vyVvYyy

* See also https://eprint.iacr.org/2019/1333.
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From torsion points to endomorphisms
The case of Eg : y* = x> + xand T > D? > p*:
finding the secretisogeny ¢4 of degree D.

PA
/_\ /\
. EO / E GI@AOLO@ (+[nD

We can choose ¢ € End(Eo) (for simplicity: of trace zero).
Know the action of ¢4 (and ©4) on the T-torsion.
Know: deg(6) = D? deg(:) + n>.

If there exist ¢, 71, € such that deg(f) = ¢T?, then can
completely determine 6, and ¢4, in time

O(Ve - polylog(p))-

» We can heuristically do this for polynomially small e when
T > D? > p*.*

vV vyVvYyy

* See also https://eprint.iacr.org/2019/1333.
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Improvements on torsion-point attacks

Know:
> T? = deg(f) = D?>deg(t) + n>.
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Improvements on torsion-point attacks

Know:
> T? = deg(f) = D?>deg(t) + n>.
» . € End(Eg) and E : y? = 23 + x ~~ deg(t) = pa® + pb® + ¢

(modulo details)

Algorithm is in 2 parts:
1. Find a,b,c,n, e € Z with € small such that
D?(pa* + pb?* + %) + n? = €T>.
2. Reconstruct ¢ € End(E) with degree pa® + pb? + ¢? and use
that to compute 4.

19 /24



Improvements on torsion-point attacks

B

4
3
2

g

4
3
2

D~ p*, T =~ p°.

Below 2-2 dotted line: attacks B-SIDH.!

Polynomial-time attack, improved classical attack,
, SIDH.

» Left: our results. Right: your results, if...

vvyVvyy

Below 1-1 dotted line: attacks SIDH group key exchange.

1

https://eprint.iacr.org/2019/1145.pdf
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https://eprint.iacr.org/2019/1145.pdf

The equation of death

Open question:

For /o ~ D =~ T, and p large,
finda, b, c, n, e € Zwith e = \/D3p/T such that

D*(pa® + pb? + ?) + n? = ¢T?

in time polynomial in log(p).
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From torsion points to endomorphisms

The case of Eg : > = x° + x
finding the secret isogeny ¢4 of degree D.

~ oA P
L EO/ \E 0 =paoropa (+[n)

PA

» Find ¢4, in time O(y/€ - polylog(p)).

» We can heuristically do this for polynomially small e when
T > D? > p%.

» For T ~ D ~ ,/p, like in SIDH, € > /D3/T.
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From torsion points to endomorphisms

The case of specially constructed Eg:
finding the secret isogeny ¢4 of degree D.

—~~ PA o
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PA

» Find ¢4, in time O(y/€ - polylog(p)).

» We can heuristically do this for polynomially small e when
T > D? > p%.

» For T ~ D ~ ,/p, like in SIDH, € > /D3/T.
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From torsion points to endomorphisms

The case of specially constructed Eg:
finding the secret isogeny ¢4 of degree D.

—~~ PA o
L EO/ \E 0 =@aoropa (+n)

PA

» Find ¢4, in time O(y/€ - polylog(p)).
» We can heuristically do this for polynomially small e when
T > D>

» For T ~ D ~ ,/p, like in SIDH, we can do this in time pl/ 8,
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From torsion points to endomorphisms

The case of specially constructed Eg:
finding the secret isogeny ¢4 of degree D.

~ oA P
L Eo/ \E 0 =paoL0Pa (+[n)
B —FC

PA

v

Find ¢4, in time O(y/e€ - polylog(p)).

We can heuristically do this for polynomially small e when
T > D>

For T ~ D =~ ,/p, like in SIDH, we can do this in time p'/%.

This is a square-root improvement over the previous best
known attack.

v

v

v
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SIDH is not broken

» Allowing for attack complexities up to the state-of-the-art,
the balance of SIDH is exactly at the point where
torsion-point attacks give no improvement.

» There are many specially constructed starting curves
allowing for an attack, but probably none help with
attacking SIDH proper.

» One more thing: you can also construct special base field
primes to get efficient torsion point attacks
(.. .which also don’t apply to SIDH proper).
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Thank you!

https://arxiv.org/abs/2005.14681
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