Constructing broken SIDH parameters: a tale of De Feo, Jao, and Plût's serendipity

Chloe Martindale

University of Bristol

University of Waterloo, 6 November 2020
Joint work with Péter Kutas, Lorenz Panny, Christophe Petit,
Victoria de Quehen, and Kate Stange

What is this all about?

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: ${ }^{a}$ and ${ }^{b}$ are commutative!

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: ${ }^{a}$ and ${ }^{b}$ are commutative!

Quantum cryptoapocalypse

- Diffie-Hellman relies on the Discrete Logarithm Problem being hard.
- Read: taking (discrete) logarithms should be much slower than exponentiating.
- Shor's quantum algorithm solves the discrete logarithm problem in polynomial time.
- Read: with access to a quantum computer, taking discrete logarithms is about as fast as exponentiation.
- Quantum computers that are sufficiently large and stable do not yet exist (probably).
- But they are likely to be only a few years away...

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Big picture $\boldsymbol{\ominus}$

- Isogenies are a source of exponentially-sized graphs.

Big picture $\boldsymbol{\ominus}$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these not enough for crypto!

Stand back!

We're going to do maths.

Maths background \#1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.

Maths background \#1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.
E is an abelian group: we can 'add' points.

- The neutral element is ∞.
- The inverse of (x, y) is $(x,-y)$.
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is easy to compute.

Maths background \#1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.
E is an abelian group: we can 'add' points.

- The neutral element is ∞.
- The inverse of (x, y) is $(x,-y)$.
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(2 x_{1}+x_{2}-\lambda^{2}\right)-y_{1}\right)
$$

where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ if $x_{1} \neq x_{2}$ and $\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}$ otherwise.

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#1: For each $m \neq 0$, the multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is a degree- m^{2} isogeny. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \times \mathbb{Z} / m
$$

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#2: For any a and b, the map $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$ defines a degree- 1 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+a x+b\right\} \longrightarrow\left\{y^{2}=x^{3}+a x-b\right\}
$$

It is an isomorphism; its kernel is $\{\infty\}$.

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#3: $(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \longrightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \infty\}$.

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

Maths background \#2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

Each isogeny $\varphi: E \rightarrow E^{\prime}$ has a unique dual isogeny $\widehat{\varphi}: E^{\prime} \rightarrow E$ characterized by $\widehat{\varphi} \circ \varphi=\varphi \circ \widehat{\varphi}=[\operatorname{deg} \varphi]$.

Maths background \#3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

Maths background \#3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k if the coefficients of its equation/formula lie in k.

Maths background \#3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k if the coefficients of its equation/formula lie in k.

For E defined over k, let $E(k)$ be the points of E defined over k.

Maths background \#4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.

Maths background \#4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.

Maths background \#4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.
Vélu operates in the field where the points in G live.
\rightsquigarrow need to make sure extensions stay small for desired $\# G$
\rightsquigarrow this is why we use supersingular curves!
${ }^{1}$ (up to isomorphism of E^{\prime})

Maths background \#5: Supersingular isogeny graphs

Let p be a prime and q a power of p.
An elliptic curve E / \mathbb{F}_{q} is supersingular if $p \mid\left(q+1-\# E\left(\mathbb{F}_{q}\right)\right)$.
We care about the cases $\# E\left(\mathbb{F}_{p}\right)=p+1$ and $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$.
\leadsto easy way to control the group structure by choosing p !

Maths background \#5: Supersingular isogeny graphs

Let p be a prime and q a power of p.
An elliptic curve E / \mathbb{F}_{q} is supersingular if $p \mid\left(q+1-\# E\left(\mathbb{F}_{q}\right)\right)$. We care about the cases $\# E\left(\mathbb{F}_{p}\right)=p+1$ and $\# E\left(\mathbb{F}_{p^{2}}\right)=(p+1)^{2}$. \rightsquigarrow easy way to control the group structure by choosing p !

Our supersingular isogeny graph over $\mathbb{F}_{p^{2}}$ will consist of:

- vertices given by supersingular elliptic curves (up to isomorphism),
- edges given by equivalence classes ${ }^{1}$ of 2 and 3-isogenies, both defined over $\mathbb{F}_{p^{2}}$.

[^0]
Graph-walking Diffie-Hellman?

The isogeny graph looks like this:

$$
p=431
$$

Now: SIDH

Supersingular Isogeny Diffie-Hellman

De Feo, Jao, Plût 2011

Diffie-Hellman: High-level view

SIDH: High-level view

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)
- They both compute the shared secret

$$
(E / B) / A^{\prime} \cong E /\langle A, B\rangle \cong(E / A) / B^{\prime}
$$

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.
Solution: φ_{B} is a group homomorphism!

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.
Solution: φ_{B} is a group homomorphism!

- Alice picks A as $\langle P+[a] Q\rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_{B}(P)$ and $\varphi_{B}(Q)$ in his public key.
\Longrightarrow Now Alice can compute A^{\prime} as $\left\langle\varphi_{B}(P)+[a] \varphi_{B}(Q)\right\rangle$!

SIDH in one slide

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

Attack by: given public info, find secret key- φ_{A} or just A.

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- supersingular public elliptic curves $E_{0} / \mathbb{F}_{p^{2}}$ and $E_{A} / \mathbb{F}_{p^{2}}$ connected by a secret 2^{n}-degree isogeny $\varphi_{A}: E_{0} \rightarrow E_{A}$, and
- the action of φ_{A} on the 3^{m}-torsion of E_{0}, finding the secret key recover φ_{A}.

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- supersingular public elliptic curves $E_{0} / \mathbb{F}_{p^{2}}$ and $E_{A} / \mathbb{F}_{p^{2}}$ connected by a secret 2^{n}-degree isogeny $\varphi_{A}: E_{0} \rightarrow E_{A}$, and
- the action of φ_{A} on the 3^{m}-torsion of E_{0}, finding the secret key recover φ_{A}.

2016 Galbraith, Petit, Shani, Ti: knowledge of $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{A}\right)$ is sufficient to efficiently break it.
2017 Petit: If $E_{0}: y^{2}=x^{3}+x$ and $3^{m}>2^{4 n}>p^{4}$, then we can construct non-scalar $\theta \in \operatorname{End}\left(E_{A}\right)$ and efficiently break it.

But in SIDH, $3^{m} \approx 2^{n} \approx \sqrt{p}$.

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- supersingular public elliptic curves $E_{0} / \mathbb{F}_{p^{2}}$ and $E_{A} / \mathbb{F}_{p^{2}}$ connected by a secret D-degree isogeny $\varphi_{A}: E_{0} \rightarrow E_{A}$, and
- the action of φ_{A} on the T-torsion of E_{0}, finding the secret key recover φ_{A}.

2016 Galbraith, Petit, Shani, Ti: knowledge of $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{A}\right)$ is sufficient to efficiently break it.
2017 Petit: If $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$, then we can construct non-scalar $\theta \in \operatorname{End}\left(E_{A}\right)$ and efficiently break it.

But in SIDH, $T \approx D \approx \sqrt{p}$.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- If there exist ι, n such that $\operatorname{deg}(\theta)=T$, then can completely determine θ, and φ_{A}.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$: finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- If there exist ι, n, ϵ such that $\operatorname{deg}(\theta)=\epsilon T$, then can completely determine θ, and φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{4}>p^{4}$:
finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- If there exist ι, n, ϵ such that $\operatorname{deg}(\theta)=\epsilon T$, then can completely determine θ, and φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{4}>p^{4}$. *

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{2}>p^{2}$:
finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- If there exist ι, n, ϵ such that $\operatorname{deg}(\theta)=\epsilon T^{2}$, then can completely determine θ, and φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}>p^{2}$.*

[^1]
From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ and $T>D^{2}>p^{2}$:
finding the secret isogeny φ_{A} of degree D.

- We can choose $\iota \in \operatorname{End}\left(E_{0}\right)$ (for simplicity: of trace zero).
- Know the action of φ_{A} (and $\widehat{\varphi_{A}}$) on the T-torsion.
- Know: $\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- If there exist ι, n, ϵ such that $\operatorname{deg}(\theta)=\epsilon T^{2}$, then can completely determine θ, and φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}>p^{2}$.*

[^2]
Improvements on torsion-point attacks

Know:

- $\epsilon T^{2}=\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.

Improvements on torsion-point attacks

Know:

- $\epsilon T^{2}=\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- $\iota \in \operatorname{End}\left(E_{0}\right)$ and $E_{0}: y^{2}=x^{3}+x \rightsquigarrow \operatorname{deg}(\iota)=p a^{2}+p b^{2}+c^{2}$ (modulo details)

Improvements on torsion-point attacks

Know:

- $\epsilon T^{2}=\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- $\iota \in \operatorname{End}\left(E_{0}\right)$ and $E_{0}: y^{2}=x^{3}+x \rightsquigarrow \operatorname{deg}(\iota)=p a^{2}+p b^{2}+c^{2}$ (modulo details)

Algorithm is in 2 parts:

1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that $D^{2}\left(p a^{2}+p b^{2}+c^{2}\right)+n^{2}=\epsilon T^{2}$.

Improvements on torsion-point attacks

Know:

- $\epsilon T^{2}=\operatorname{deg}(\theta)=D^{2} \operatorname{deg}(\iota)+n^{2}$.
- $\iota \in \operatorname{End}\left(E_{0}\right)$ and $E_{0}: y^{2}=x^{3}+x \rightsquigarrow \operatorname{deg}(\iota)=p a^{2}+p b^{2}+c^{2}$ (modulo details)

Algorithm is in 2 parts:

1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that
$D^{2}\left(p a^{2}+p b^{2}+c^{2}\right)+n^{2}=\epsilon T^{2}$.
2. Reconstruct $\iota \in \operatorname{End}\left(E_{0}\right)$ with degree $p a^{2}+p b^{2}+c^{2}$ and use that to compute φ_{A}.

Improvements on torsion-point attacks

- $D \approx p^{\alpha}, T \approx p^{\beta}$.
- Below 1-1 dotted line: attacks SIDH group key exchange.
- Below 2-2 dotted line: attacks B-SIDH. ${ }^{1}$
- Polynomial-time attack, improved classical attack, improvemed quantum attack, SIDH.
- Left: our results. Right: your results, if...

[^3]
The equation of death

Open question:

For $\sqrt{p} \approx D \approx T$, and p large,
find $a, b, c, n, \epsilon \in \mathbb{Z}$ with $\epsilon \approx \sqrt{D^{3} p} / T$ such that

$$
\begin{aligned}
& D^{2}\left(p a^{2}+p b^{2}+c^{2}\right)+n^{2}=\epsilon T^{2} \\
& \text { in time polynomial in } \log (p) .
\end{aligned}
$$

From torsion points to endomorphisms

The case of $E_{0}: y^{2}=x^{3}+x$ finding the secret isogeny φ_{A} of degree D.

- Find φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}>p^{2}$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^{3} p} / T$.

From torsion points to endomorphisms

The case of specially constructed E_{0} : finding the secret isogeny φ_{A} of degree D.

- Find φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}>p^{2}$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^{3} p} / T$.

From torsion points to endomorphisms

The case of specially constructed E_{0} : finding the secret isogeny φ_{A} of degree D.

- Find φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^{3} p} / T$.

From torsion points to endomorphisms

The case of specially constructed E_{0} : finding the secret isogeny φ_{A} of degree D.

- Find φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1 / 8}$.

From torsion points to endomorphisms

The case of specially constructed E_{0} : finding the secret isogeny φ_{A} of degree D.

- Find φ_{A}, in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T>D^{2}$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1 / 8}$.
- This is a square-root improvement over the previous best known attack.

SIDH is not broken

- Allowing for attack complexities up to the state-of-the-art, the balance of SIDH is exactly at the point where torsion-point attacks give no improvement.
- There are many specially constructed starting curves allowing for an attack, but probably none help with attacking SIDH proper.
- One more thing: you can also construct special base field primes to get efficient torsion point attacks
(. . . which also don't apply to SIDH proper).

Thank you!

https://arxiv.org/abs/2005.14681

[^0]: ${ }^{1}$ Two isogenies $\varphi: E \rightarrow E^{\prime}$ and $\psi: E \rightarrow E^{\prime \prime}$ are identified if $\psi=\iota \circ \varphi$ for some isomorphism $\iota: E^{\prime} \rightarrow E^{\prime \prime}$.

[^1]: * See also https://eprint.iacr. org/2019/1333.

[^2]: * See also https://eprint.iacr.org/2019/1333.

[^3]: $1_{\text {https://eprint.iacr.org/2019/1145.pdf }}$

