Constructing broken SIDH parameters: a tale of De Feo, Jao, and Plût's serendipity

Chloe Martindale

University of Bristol

University of Waterloo, 6 November 2020

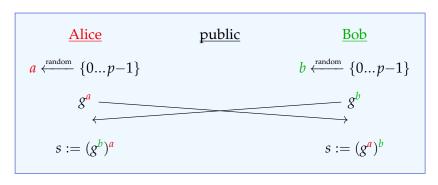
Joint work with Péter Kutas, Lorenz Panny, Christophe Petit, Victoria de Quehen, and Kate Stange What is this all about?

Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today also elliptic curves)
- ▶ an element $g \in G$ of prime order p

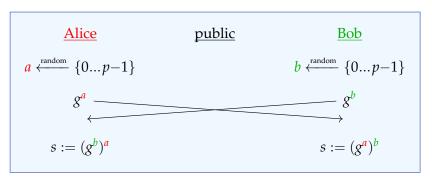
Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today also elliptic curves)
- ▶ an element $g \in G$ of prime order p



Public parameters:

- ▶ a finite group G (traditionally \mathbb{F}_p^* , today also elliptic curves)
- ▶ an element $g \in G$ of prime order p



Fundamental reason this works: \cdot^a and \cdot^b are commutative!

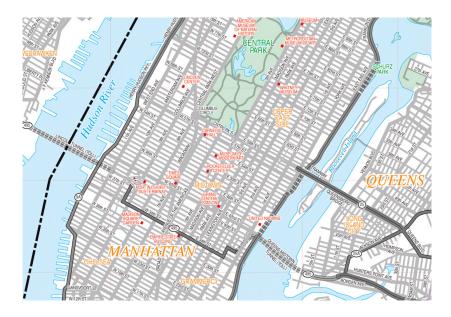
Public parameters:

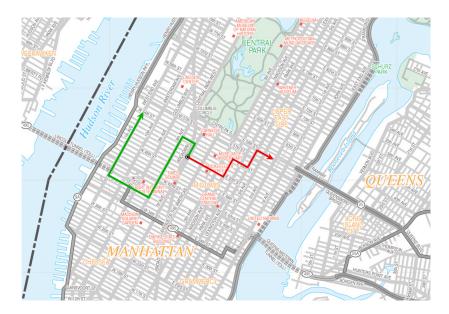
▶ a finite group G (traditionally \mathbb{F}_p^* , today also elliptic curves)

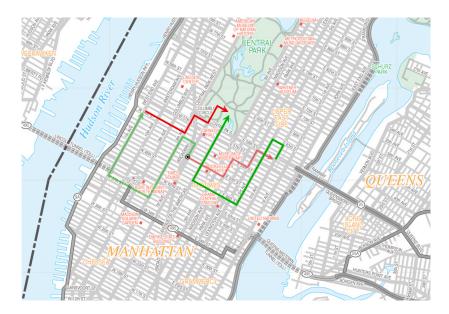
Fundamental reason this works: \cdot^a and \cdot^b are commutative!

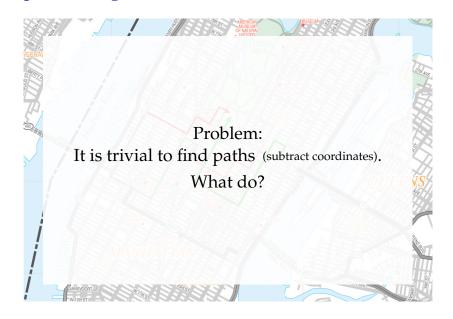
Quantum cryptoapocalypse

- ► Diffie-Hellman relies on the Discrete Logarithm Problem being hard.
 - ► Read: taking (discrete) logarithms should be much slower than exponentiating.
- ► Shor's quantum algorithm solves the discrete logarithm problem in polynomial time.
 - ► Read: with access to a quantum computer, taking discrete logarithms is about as fast as exponentiation.
- Quantum computers that are sufficiently large and stable do not yet exist (probably).
- ▶ But they are likely to be only a few years away...









► <u>Isogenies</u> are a source of exponentially-sized graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- ► No known efficient algorithms to recover paths from endpoints.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- ► Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- ► Enough structure to navigate the graph meaningfully.

 That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do maths.

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E:
$$y^2 = x^3 + ax + b$$
.

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- ▶ The neutral element is ∞ .
- ▶ The inverse of (x, y) is (x, -y).
- ▶ The sum of (x_1, y_1) and (x_2, y_2) is easy to compute.

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$E: y^2 = x^3 + ax + b.$$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- ▶ The neutral element is ∞ .
- ► The inverse of (x, y) is (x, -y).
- ► The sum of (x_1, y_1) and (x_2, y_2) is

$$(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1)$$

where
$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}$$
 if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ▶ a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-m map

$$[m]: E \to E$$

is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map $\iota : (x,y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ► given by rational functions.
- ► a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3:
$$(x,y) \mapsto \left(\frac{x^3-4x^2+30x-12}{(x-2)^2}, \frac{x^3-6x^2-14x+35}{(x-2)^3} \cdot y\right)$$
 defines a degree-3 isogeny of the elliptic curves $\{y^2=x^3+x\} \longrightarrow \{y^2=x^3-3x+3\}$ over \mathbb{F}_{71} . Its kernel is $\{(2,9),(2,-9),\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \to E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

An isogeny of elliptic curves is a non-zero map $E \to E'$ that is:

- ▶ given by rational functions.
- ► a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \to E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = \varphi \circ \widehat{\varphi} = [\deg \varphi]$.

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

For *E* defined over k, let E(k) be the points of *E* defined over k.

Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

 $^{^{1}}$ (up to isomorphism of E')

Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71:

Formulas for computing E/G and evaluating φ_G at a point.

Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

 $^{^{1}}$ (up to isomorphism of E')

Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel G.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71:

Formulas for computing E/G and evaluating φ_G at a point.

Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

- \rightsquigarrow need to make sure extensions stay small for desired #G
- → this is why we use supersingular curves!

 $^{^{1}}$ (up to isomorphism of E')

Maths background #5: Supersingular isogeny graphs

Let p be a prime and q a power of p.

```
An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if p \mid (q+1-\#E(\mathbb{F}_q)).
```

We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$.

 \rightsquigarrow easy way to control the group structure by choosing p!

Maths background #5: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if $p \mid (q+1-\#E(\mathbb{F}_q))$.

We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$.

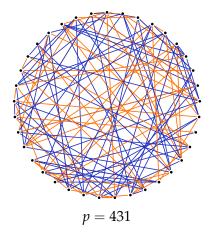
 \rightsquigarrow easy way to control the group structure by choosing p!

Our supersingular isogeny graph over \mathbb{F}_{p^2} will consist of:

- vertices given by supersingular elliptic curves (up to isomorphism),
- edges given by equivalence classes¹ of 2 and 3-isogenies, both defined over \mathbb{F}_{p^2} .

¹Two isogenies φ : $E \to E'$ and ψ : $E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism ι : $E' \to E''$.

The isogeny graph looks like this:

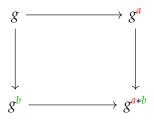


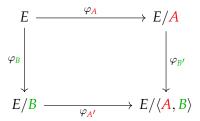
Now: SIDH

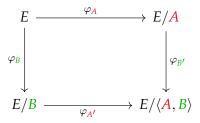
Supersingular Isogeny Diffie-Hellman

De Feo, Jao, Plût 2011

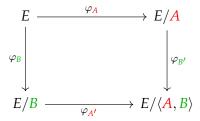
Diffie-Hellman: High-level view



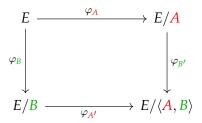




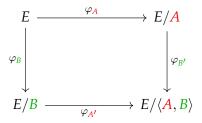
► Alice & Bob pick secret subgroups *A* and *B* of *E*.



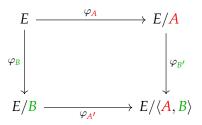
- ▶ Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.



- ▶ Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes φ_A : $E \to E/A$; Bob computes φ_B : $E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.



- ▶ Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes φ_A : $E \to E/A$; Bob computes φ_B : $E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.
- ▶ Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.
- ▶ Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'$.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

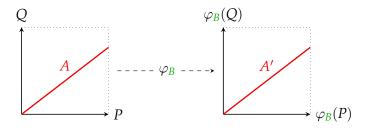
Alice knows only A, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

Solution: φ_B is a group homomorphism!

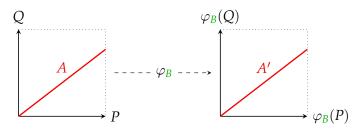


SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

Solution: φ_B is a group homomorphism!



- ▶ Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ▶ a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Attack by: given public info, find secret key– φ_A or just A.

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- ▶ supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A : E_0 \to E_A$, and
- ▶ the action of φ_A on the 3^m -torsion of E_0 ,

finding the secret key recover φ_A .

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- ▶ supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A: E_0 \to E_A$, and
- ▶ the action of φ_A on the 3^m -torsion of E_0 ,

finding the secret key recover φ_A .

- 2016 Galbraith, Petit, Shani, Ti: knowledge of $\operatorname{End}(E_0)$ and $\operatorname{End}(E_A)$ is sufficient to efficiently break it.
- 2017 Petit: If $E_0: y^2 = x^3 + x$ and $3^m > 2^{4n} > p^4$, then we can construct non-scalar $\theta \in \text{End}(E_A)$ and efficiently break it.

But in SIDH,
$$3^m \approx 2^n \approx \sqrt{p}$$
.

Torsion-point attacks on SIDH

'Breaking SIDH' means:

Given

- ▶ supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret D-degree isogeny $\varphi_A : E_0 \to E_A$, and
- ▶ the action of φ_A on the *T*-torsion of E_0 ,

finding the secret key recover φ_A .

- 2016 Galbraith, Petit, Shani, Ti: knowledge of $\operatorname{End}(E_0)$ and $\operatorname{End}(E_A)$ is sufficient to efficiently break it.
- 2017 Petit: If $E_0: y^2 = x^3 + x$ and $T > D^4 > p^4$, then we can construct non-scalar $\theta \in \operatorname{End}(E_A)$ and efficiently break it.

But in SIDH, $T \approx D \approx \sqrt{p}$.

The case of E_0 : $y^2 = x^3 + x$ and $T > D^4 > p^4$: finding the secret isogeny φ_A of degree D.

▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).

The case of $E_0: y^2 = x^3 + x$ and $T > D^4 > p^4$: finding the secret isogeny φ_A of degree D.

▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.
- ▶ If there exist ι , n such that $\deg(\theta) = T$, then can completely determine θ , and φ_A .

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.
- ▶ If there exist ι, n, ϵ such that $\deg(\theta) = \epsilon T$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.
- ▶ If there exist ι, n, ϵ such that $\deg(\theta) = \epsilon T$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^4 > p^4$. *

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.
- ▶ If there exist ι , n, ϵ such that $\deg(\theta) = \epsilon T^2$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.*

^{*} See also https://eprint.iacr.org/2019/1333.

- ▶ We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- ▶ Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $deg(\theta) = D^2 deg(\iota) + n^2$.
- ▶ If there exist ι , n, ϵ such that $\deg(\theta) = \epsilon T^2$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.*

^{*} See also https://eprint.iacr.org/2019/1333.

Know:

 $\bullet \epsilon T^2 = \deg(\theta) = D^2 \deg(\iota) + n^2.$

Know:

- ▶ $\iota \in \operatorname{End}(E_0)$ and $E_0: y^2 = x^3 + x \rightsquigarrow \deg(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Know:

- ▶ $\iota \in \operatorname{End}(E_0)$ and $E_0: y^2 = x^3 + x \leadsto \deg(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Algorithm is in 2 parts:

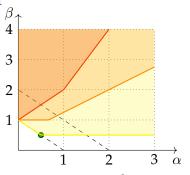
1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that $D^2(pa^2 + pb^2 + c^2) + n^2 = \epsilon T^2$.

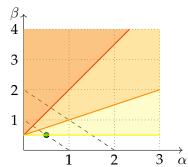
Know:

- ▶ $\iota \in \operatorname{End}(E_0)$ and $E_0: y^2 = x^3 + x \leadsto \deg(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Algorithm is in 2 parts:

- 1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that $D^2(pa^2 + pb^2 + c^2) + n^2 = \epsilon T^2$.
- 2. Reconstruct $\iota \in \operatorname{End}(E_0)$ with degree $pa^2 + pb^2 + c^2$ and use that to compute φ_A .





- ▶ $D \approx p^{\alpha}$, $T \approx p^{\beta}$.
- ▶ Below 1-1 dotted line: attacks SIDH group key exchange.
- ▶ Below 2-2 dotted line: attacks B-SIDH.¹
- ► Polynomial-time attack, improved classical attack, improvemed quantum attack, SIDH.
- ► Left: our results. Right: your results, if...

¹ https://eprint.iacr.org/2019/1145.pdf

The equation of death

Open question:

For
$$\sqrt{p} \approx D \approx T$$
, and p large, find a , b , c , n , $\epsilon \in \mathbb{Z}$ with $\epsilon \approx \sqrt{D^3p}/T$ such that

$$D^{2}(pa^{2} + pb^{2} + c^{2}) + n^{2} = \epsilon T^{2}$$

in time polynomial in log(p).

The case of E_0 : $y^2 = x^3 + x$ finding the secret isogeny φ_A of degree D.

- ▶ Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.
- ► For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- ► Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.
- ► For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- ▶ Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2$.
- ► For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- ► Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2$.
- ▶ For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1/8}$.

- ► Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- ▶ We can heuristically do this for polynomially small ϵ when $T > D^2$.
- ► For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1/8}$.
- ► This is a square-root improvement over the previous best known attack.

SIDH is not broken

- ► Allowing for attack complexities up to the state-of-the-art, the balance of SIDH is exactly at the point where torsion-point attacks give no improvement.
- ► There are many specially constructed starting curves allowing for an attack, but probably none help with attacking SIDH proper.
- ► One more thing: you can also construct special base field primes to get efficient torsion point attacks (...which also don't apply to SIDH proper).

Thank you!

https://arxiv.org/abs/2005.14681