Quantum attacks on CSIDH: an overview

Chloe Martindale

University of Bristol

Based on joint work with Daniel J. Bernstein, Tanja Lange, and Lorenz Panny

quantum.isogeny.org

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Smallest keys of all post-quantum key exchange candidates
- ► Competitive speed: 50-60ms for a full key exchange

CSIDH: a picture

Secret key: path on the graph Public key: end points of path.

Recall Kuperberg's algorithm from David Jao's talk.

2011 Kuperberg estimates time complexity $2^{(\sqrt{2}+o(1))\sqrt{\log_2 p}}$, improvement on 2003 Kuperberg: $2^{(1.77+o(1))\sqrt{\log_2 p}}$.

Recall Kuperberg's algorithm from David Jao's talk.

2011 Kuperberg estimates time complexity $2^{(\sqrt{2}+o(1))\sqrt{\log_2 p}}$, improvement on 2003 Kuperberg: $2^{(1.77+o(1))\sqrt{\log_2 p}}$.

Main open questions on asymptotics:

► Can the power of log₂ *p* be reduced?

Recall Kuperberg's algorithm from David Jao's talk.

2011 Kuperberg estimates time complexity $2^{(\sqrt{2}+o(1))\sqrt{\log_2 p}}$, improvement on 2003 Kuperberg: $2^{(1.77+o(1))\sqrt{\log_2 p}}$.

Main open questions on asymptotics:

- ► Can the power of log₂ *p* be reduced?
- ▶ If not, can the constant √2 be improved? (Last improvement: 2011).

Recall Kuperberg's algorithm from David Jao's talk.

2011 Kuperberg estimates time complexity $2^{(\sqrt{2}+o(1))\sqrt{\log_2 p}}$, improvement on 2003 Kuperberg: $2^{(1.77+o(1))\sqrt{\log_2 p}}$.

Main open questions on asymptotics:

- ► Can the power of log₂ *p* be reduced?
- ▶ If not, can the constant √2 be improved? (Last improvement: 2011).
- If not, what's the smallest o(1)?
 Important for proposing parameters! (See next talk).

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

Kuperberg's attack: many quantum CSIDH queries.

► Not covered in this talk: how many queries needed?

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

- ► Not covered in this talk: how many queries needed?
- How is attack affected by occasional errors and non-uniform distributions over the group?

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

- ► Not covered in this talk: how many queries needed?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- How expensive is each CSIDH query? Studied in joint work with Bernstein, Lange, and Panny.

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

- ► Not covered in this talk: how many queries needed?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- How expensive is each CSIDH query? Studied in joint work with Bernstein, Lange, and Panny.
- What about memory, using parallel AT metric? Trade-offs possible: (theoretically) fastest variant uses billions of qubits.

What CSIDH key sizes are needed for post-quantum security level 2⁶⁴? 2⁹⁶? 2¹²⁸?

- ► Not covered in this talk: how many queries needed?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- How expensive is each CSIDH query?
 Studied in joint work with Bernstein, Lange, and Panny.
- What about memory, using parallel AT metric? Trade-offs possible: (theoretically) fastest variant uses billions of qubits.

One CSIDH query: isogenies

Nodes: Supersingular curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

One CSIDH query: isogenies

Aim: given curve E_A , find a neighbour in the isogeny graph

Edges: 3-, 5-, and 7-isogenies.

Aim: given curve E_A , find a neighbour in the 3-isogeny graph

Edges: 3-isogenies.

• Recall:
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$
.

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.

Aim: given curve E_A , find a neighbour in the 3-isogeny graph

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

• With probability $\frac{2}{3}$, 140 · *P* has order 3

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Find map with kernel = $\langle 140 \cdot P \rangle$

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Find map with kernel = $\langle 140 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- ▶ *P* has order dividing 420.
- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Find map with kernel = $\langle 140 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- ▶ *P* has order dividing 420.
- With probability $\frac{4}{5}$, 84 · *P* has order 5
- Find map with kernel = $\langle 84 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- ▶ *P* has order dividing 420.
- With probability $\frac{4}{5}$, 84 · *P* has order 5
- Find map with kernel = $\langle 84 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- ▶ *P* has order dividing 420.
- With probability $\frac{6}{7}$, 60 · *P* has order 7
- Find map with kernel = $\langle 60 \cdot P \rangle$
- Image of map is a neighbour

Aim: given curve E_A , find a neighbour in the ℓ -isogeny graph

- Recall: $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$
- Choose a random \mathbb{F}_p -point P = (x, y) on E_A

- With probability $\frac{\ell-1}{\ell}$, $\frac{p+1}{\ell} \cdot P$ has order ℓ .*
- Find map with kernel = $\langle \frac{p+1}{\ell} \cdot P \rangle$
- Image of map is a neighbour

* assuming $\ell | (p + 1)$.

• A query computes paths in superposition.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- Isogeny computation fails often for small ℓ .

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- ► Isogeny computation fails often for small *l*.
 ~→ problematic for quantum implementation.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- ► Isogeny computation fails often for small *l*.
 → problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex variants-trying to mitigate these problems.

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of		sequence of		sequence of
basic bit ops		reversible ops		reversible ops
with $\leq \overline{B}$	$\sim \rightarrow$	with $\leq 2\bar{B}$	$\sim \rightarrow$	with $\leq 14\overline{B}$
nonlinear ops		Toffoli ops		T-gates

Why this generic conversion?

Unknown expense of extra O(B) measurements in context of surface-code error correction

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of		sequence of		sequence of
basic bit ops	\rightsquigarrow	reversible ops	\rightsquigarrow	reversible ops
with $\leq \overline{B}$		with $\leq 2\bar{B}$		with $\leq 14\overline{B}$
nonlinear ops		Toffoli ops		T-gates

Why this generic conversion?

Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:

How much faster than the generic conversion is possible?

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

• Note that each ℓ_i divides p + 1.

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

$$765325228976 \approx 0.7 \cdot 2^{40}$$

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

$$765325228976 \approx 0.7 \cdot 2^{40}$$

nonlinear bit operations. Previous record was 2⁵¹.

• Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

$$765325228976 \approx 0.7 \cdot 2^{40}$$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

$$765325228976 \approx 0.7 \cdot 2^{40}$$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.

[CLMPR]: proposes CSIDH-512 for NIST level I

(based on asymptotic complexities for Kuperberg's algorithm).

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

$$765325228976 \approx 0.7 \cdot 2^{40}$$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.
- Number of queries: see next talk.

Oracle errors

BLMP gives oracle costs for error rates 2^{-1} , 2^{-32} , and 2^{-256} .

Oracle errors

- BLMP gives oracle costs for error rates 2^{-1} , 2^{-32} , and 2^{-256} .
 - Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.

Oracle errors

BLMP gives oracle costs for error rates 2^{-1} , 2^{-32} , and 2^{-256} .

- Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.
- Advances in quantum error correction would also massively change the complexity.

Open questions: summary

- ► How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- ► Is there a quantum algorithm that does better than L(1/2)?
- Can we decrease the cost of one query?

Open questions: summary

- ► How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- Is there a quantum algorithm that does better than L(1/2)?
- Can we decrease the cost of one query?

Thank you!

References

BLMP Bernstein, Lange, Martindale, and Panny, *Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies*, Eurocrypt 2019, quantum.isogeny.org.

CLMPR Castryck, Lange, Martindale, Panny, and Renes, CSIDH: An efficient post-quantum commutative group action, Asiacrypt 2018, csidh.isogeny.org.

Credits to my coauthors Daniel J. Bernstein, Tanja Lange, and Lorenz Panny for many of the contents of this presentation.