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Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange

candidates
I Competitive speed: 50-60ms for a full key exchange
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CSIDH: a picture

Secret key: path on the graph
Public key: end points of path.
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Quantum complexity analysis

Recall Kuperberg’s algorithm from David Jao’s talk.

2011 Kuperberg estimates time complexity 2(
√

2+o(1))
√

log2 p,
improvement on 2003 Kuperberg: 2(1.77+o(1))

√
log2 p.

Main open questions on asymptotics:
I Can the power of log2 p be reduced?
I If not, can the constant

√
2 be improved?

(Last improvement: 2011).
I If not, what’s the smallest o(1)?

Important for proposing parameters! (See next talk).
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Concrete quantum complexity analysis

What CSIDH key sizes are needed for
post-quantum security level 264? 296? 2128?

Kuperberg’s attack: many quantum CSIDH queries.
I Not covered in this talk: how many queries needed?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I How expensive is each CSIDH query?

Studied in joint work with Bernstein, Lange, and Panny.
I What about memory, using parallel AT metric?

Trade-offs possible: (theoretically) fastest variant uses
billions of qubits.
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One CSIDH query: isogenies

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Computing isogenies

Aim: given curve EA, find a neighbour in the isogeny graph

E51

Edges: 3-, 5-, and 7-isogenies.
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Aim: given curve EA, find a neighbour in the 3-isogeny graph
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Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.

I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability
I Find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the 5-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3
I Find map with kernel = 〈140 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Find map with kernel = 〈84 · P〉
I Image of map is a neighbour
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Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Find map with kernel = 〈84 · P〉
I Image of map is a neighbour
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Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 6

7 , 60 · P has order 7
I Find map with kernel = 〈60 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the `-isogeny graph

E51

I Recall: EA/Fp : y2 = x3 + Ax2 + x
I Choose a random Fp-point P = (x, y) on EA

I P has order dividing p + 1.

I With probability `−1
` , p+1

` · P has order `.∗

I Find map with kernel = 〈p+1
` · P〉

I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing a query

I A query computes paths in superposition.

I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.
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Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?
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Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I
(based on asymptotic complexities for Kuperberg’s algorithm).

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: see next talk.
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Oracle errors

BLMP gives oracle costs for error rates 2−1, 2−32, and 2−256.

I Understanding the error tolerance of Kuperberg’s
algorithm is essential to obtain accurate concrete numbers.

I Advances in quantum error correction would also
massively change the complexity.
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Open questions: summary

I How do oracle errors interact with Kuperberg’s algorithm?
I What kind of overheads come from handling large

numbers of qubits?
I Is there a quantum algorithm that does better than L(1/2)?
I Can we decrease the cost of one query?

Thank you!
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