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Why elliptic-curve cryptography (ECC)?

ECC is widely deployed across many use cases. Why? It is:

v

Low memory
Fast
Flexible
» TLS, AKE, Signal protocol, IBE (using pairings), . ..
Robust

v

v

v
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Ex: WhatsApp (uses Signal protocol)

Public Key Types

+ Identity Key Pair — Along-term Curve25519 key pair,
generated at install time.

+ Signed Pre Key — A medium-term Curve25519 key pair,
generated at install time, signed by the Tdentity Key, and rotated
on a periodic timed basis.

+ One-Time Pre Keys — A queue of Curve25519 key pairs for one
time use, generated at install time, and replenished as needed.

Session Key Types
+ Root Key — A 32-byte value that is used to create Chain Keys.

+ Chain Key — A 32-byte value that is used to create Message
Keys.

+ Message Key — An 80-byte value that is used to encrypt message
contents. 32 bytes are used for an AES-256 key, 32 bytes for a
HMAC-SHA256 key, and 16 bytes for an IV.
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What is a pairing?

Pairings are maps of groups.

» A group G comes with a group operation *.
» eg. G =Z/pZ — {0} with * given by multiplication.

» lfgeGandn € Z>g, writeg" =g --- % g.
N——

n times

» eg. (3 (mod 5))> =3-3 (mod 5).
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What is a pairing?

Pairings are bilinear maps of groups. In particular:

Gl X Gz — G3
&h) = PEh
(g% 1) — P(g,m)™

Why is this useful?
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Private Key Generator
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For this protocol idea to be useful, we need:
» Fast exponentiation in G1, G, and G3. Examples:
» Unit groups of finite fields (square-and-multiply).
» Elliptic curve groups (double-and-add).
» Hard discrete logarithms problems in G1, G, and Gs.
» Bilinearity of P ~» complexity of DLP in each of G1, G, and
Gs is the fastest algorithm for solving DLP in any of G4, G,
or Gs.
» An explicit pairing formula.
» Example: the Weil pairing with G and Gy as elliptic curve
groups and Gg as a finite field group.
» Fast pairing computation.

» Instances of the Weil pairing can be efficiently computed
with Miller’s algorithm.
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How hard is the discrete logarithm problem?

g € G (any):

gel:

gec E(Fpk)t

—— — BN S "

n times
\

Complexity: depends on G

—— Index calculus+ i

C lexity: if p large, non-special, and k small, L(1/2, ¢)
omplexity: for most pairing instances, p is special, giving ka(1/3, c)

—— —— QI —
Y

C lexity: if p large, non-special, and k small, for most E,
omplexity: O(+/r), where r is the largest prime dividing #E(F )
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Pairing-friendly families

Main idea: construct examples of pairings G1 x G — G3 where
the complexity of DLP is about the same in each group.

» Many constructions: BN curves, BLS curves, [GMT19],
[FM19], [BEG19], ...
» Disclaimer for papers before 2016: New

improvements/refinements to the attack methods in 2016.
See eg. [BD17] for an overview.

» Worst-case asymptotic complexity went from L[1/3,1.923]
to L«[1/3,1.526].
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That’s cute, but what about quantum
computers?
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Cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver
Problems:
» Communication channels (adversaries) store and spy on
our data
» Communication channels are modifying our data
Goals:

» Confidentiality despite Eve’s espionage.
» Integrity: recognising Eve’s espionage.

(Slide mostly stolen from Tanja Lange)
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Post-quantum cryptography

Plia ——

Sender Channel with eavesdropper ‘Eve’ Receiver

» Eve has a quantum computer.

» Harry and Meghan don’t have a quantum computer.

(Slide mostly stolen from Tanja Lange)
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Why does Eve need a quantum computer?
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with Shor’s quantum algorithm this is no longer true.
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» Asymmetric cryptography typically relies on the discrete
logarithm problem being slow to solve:
with Shor’s quantum algorithm this is no longer true.
~» will make current asymmetric algorithms obselete.

» Symmetric cryptography typically has less mathematical
structure so quantum computers are less devastating,
but Grover’s quantum algorithm still speeds up attacks.
~+ reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in
asymmetric cryptography with something quantum-resistant.
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Where are we now?

» Post-quantum cryptography discussion dominated by
NIST competition for standardization.

» This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough—and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain—that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.
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Recall: Diffie-Hellman key exchange 76

Public parameters:
> a prime p (experts: uses I, today also elliptic curves)

» a number g (mod p) (nonexperts: think of an integer less than p)

Alice Eve Bob
sk &2 {0...p—1} skp <=2 {0...p—1}
= :égik/‘><pk3>: g
SS 1= (gSkB)SkA SS 1= (gSkA)SkB

» Alice and Bob agree on a shared secret key ss, then they

can use that to encrypt their messages.
» Eve sees pk, = ¢, pk, = ¢°%; can’t find sk, sk, ss.
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Alternatives

Ideas to replace Diffie-Hellman key exchange:

>

Code-based encryption: uses error correcting codes.
Short ciphertexts, large public keys.

Hash-based signatures: uses hard-to-invert functions.
Well-studied security, small public keys.

Isogeny-based encryption and signatures: based on
finding maps between (elliptic) curves.
Smallest keys, slow encryption.

Lattice-based encryption and signatures: based on finding
short vectors in high-dimensional lattices.
Fastest encryption, huge keys, slow signatures.

Multivariate signatures: based on solving simulateneous
multivariate equations.
Short signatures, large public keys, slow.
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Graph walking Diffie-Hellman?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

.%

We’re going to do maths.
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Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is
Em| = Z/m x Z/m.
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An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
{» =x+ax+b} — {y*=x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

{(P=2>+x} — {=x>-3x+3}
over Fy;. Its kernel is {(2,9), (2, —9), co}.
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An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by o ¢ = ¢ 0 o = [deg ¢].
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Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F, is supersingular if p | (9 + 1 — #E(Fy)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!
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Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, g a power of p, and ¢ a positive integer ¢ pZ.

An elliptic curve E/F; is supersingular if p | (9 +1 — #E(F;)).

We care about the cases #E(F,) = p + 1 and #E(F,2) = (p + 1)%
~ easy way to control the group structure by choosing p!

Let S Z p denote a set of prime numbers.
The supersingular S-isogeny graph over [, consists of:

» vertices given by isomorphism classes of supersingular
elliptic curves,

» edges given by equivalence classes® of /-isogenies (£ € S),
both defined over F,.

'"Two isogenies ¢: E — E' and ¢: E — E” are identified if 1) = ¢ o ¢ for

some isomorphism ¢: E' — E".
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The beauty and the beast

Components of the isogeny graphs look like this:
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The beauty and the beast

Components of the isogeny graphs look like this:
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The beauty and the beast

For key exchange/KEM, there are two families of systems:
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Isogeny graphs at the CSIDH
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Isogeny graphs at the CSIDH
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Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.

Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

» Idea to replace DLP: replace exponentiation

ZxG — G
(x,8) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Ep:y? = x> + Ax? + x over Fyo.

» Replace Z by a commutative group H that acts via
isogenies.

» The action of h € H on S moves the elliptic curves one step
around one of the cycles.
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Graphs of elliptic curves
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:

» Find a point P of order £ on E.

» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas* (implemented in Sage).
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:
» Find a point P of order / on E.
» Let E/F, be supersingular and p > 5. Then E(FF,) = Cp4; or
C2 X C(p+1)/2.
» Suppose we have found P = E(FF;,) of order p + 1 or
(r+1)/2.
» For every odd prime /|(p + 1), the point #P is a point of
order /.
» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu's formulas* (implemented in Sage).
» Given a IF,-rational point of order /, the isogeny
computations can be done over F,.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.

= Can compress every node to a single value A € .

= Tiny keys!
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Does any A work?

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = co.!

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Quantum Security
Original proposal in 2018 paper: [, ~ 512 bits.
» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
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Quantum Security
Original proposal in 2018 paper: [, ~ 512 bits.
» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
» [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 = 0.7 - 240 nonlinear bit
operations.

» Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 2'¢ queries using 2*° bits of quantum
accessible classical memory.

» For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 2°° qubit operations.

» Overheads from error correction, high quantum memory
etc., not yet understood.

31/43



Venturing beyond the CSIDH

A selection of advances since original publication (2018):

>

>

CSURF [CD19]: exploiting 2-isogenies.
sqrtVelu [BDLS20]: square-root speed-up on computation
of large-degree isogenies.

Radical isogenies [CDV20]: significant speed-up on
isogenies of small-ish degree.

Some work on different curve forms (e.g. Edwards, Huff).

Knowledge of End(Ep) and End(E,4) breaks CSIDH in
classical polynomial time [Wes21].

The SQALE of CSIDH [CCJR22]: carefully constructed
CSIDH parameters less susceptible to Kuperberg’s
algorithm.

CTIDH [B?C?LMS?]: Efficient constant-time CSIDH-style
construction.
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Now:

SIDH

Supersingular Isogeny Diffie-Hellman
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Diffie-Hellman: High-level view
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SIDH: High-level view

E o E/A
¥B ®p!
E/B ———— E/(A,B)

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

vV vV.v vY

They both compute the shared secret
(E/B)/A" = E/(A,B) = (E/A) /B,
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).

Alice knows only A, Bob knows only ¢p. Hm.
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

P ©p(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢p(P) and ¢3(Q) in his public key.
—> Now Alice can compute A" as (pp(P) + [a]vp(Q))!
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SIDH in one slide

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, va(PB), ¢a(QB) E/B, wp(Pa), ¢5(Qa)

é/}-&)
A" = (pp(Pa) + [alpp(Qa)) = (pa(Pg) + [b]a(QB))
s := j((E/B)/A") s:=j((E/A)/B)

Break it by: given public info, find secret key—p4 or just A.
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Security

Hard Problem:
Given

> supersingular public elliptic curves Eo/F,» and E4 /I
connected by a secret 2""-degree isogeny ¢, : Eg — E4,
and

» the action of ¢4 on the 3" -torsion of Ej,

find the secret key recover ¢ .
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Security

Hard Problem:
Given

> supersingular public elliptic curves Eo/F,» and E4 /I
connected by a secret 2""-degree isogeny ¢, : Eg — E4,
and

» the action of ¢4 on the 3" -torsion of Ej,

find the secret key recover ¢ .

» Knowledge of End(Ej) and End(E,) is sufficient to
efficiently break it.

» Active attacker can recover secret.
» In SIDH, End(E) is fixed and 3" ~ 2" ~ | /p.
» If3" > 2" or 3",2" > | /p, security claims are weakened.
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Security of SIKE

» Best known attacks on SIKE, where Eo/IF), : y2 =x% +xand
2" = 3™ are on the Isogeny Problem:
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Security of SIKE

v

Best known attacks on SIKE, where Eo/F), : y2 =x% +xand
2" = 3™ are on the Isogeny Problem:

» The isogeny problem: given two elliptic curves, find an
isogeny between them.
Best classical attack: meet-in-the-middle O(p'/4).

Best quantum attack: meet-in-the-middle + Grover
O(p'/*), but slightly better in practise.

v

v

» No commutative group action to exploit here*
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What about signatures?
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Ex: CSI-FiSh (s ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren 19)
Identification scheme from H x S — S:

Prover Public Verifier
EeS l,eH
si< $7Z
sk = [T,
pk = sk x E L pk
c c+ ${0,1}
t $7Z -
esk = [T 1",
epk; = esk x E,
epk, = esk - sk™¢ pk,epk; ,epk,

 ’ check:

epk; = epk, * ([sk’] * E).

After k challenges c, an imposter succeeds with prob 2.
40/ 43



Ex: SQISlgI’I (De Feo-Kohel-Leroux-Petit-Wesolowski “20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find a € H such that
axE=EFE.
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Ex: SQISlgn (De Feo-Kohel-Leroux-Petit-Wesolowski “20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find an isogeny* E — E’

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E - Eqp

|

Ep —~E

ver

public, secret, ephemeral secret, public challenge, public proof
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group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

» CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

» SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.

42 /43



Thank you!
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