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Why elliptic-curve cryptography (ECC)?

ECC is widely deployed across many use cases. Why? It is:

I Low memory
I Fast
I Flexible

I TLS, AKE, Signal protocol, IBE (using pairings), . . .
I Robust
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Ex: WhatsApp (uses Signal protocol)
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What is a pairing?

Pairings are maps of groups.

I A group G comes with a group operation ∗.
I eg. G = Z/pZ− {0}with ∗ given by multiplication.

I If g ∈ G and n ∈ Z≥0, write gn = g ∗ · · · ∗ g︸ ︷︷ ︸
n times

.

I eg. (3 (mod 5))2 = 3 · 3 (mod 5).
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What is a pairing?

Pairings are bilinear maps of groups.

In particular:

G1 ×G2 → G3

(g, h) 7→ P(g, h)

(ga, hb) 7→ P(g, h)ab

Why is this useful?
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Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

Use a pairing P : G1 ×G2 → G3

Private Key Generator

Alice’s secret identity id-a ∈ G1; Public pub ∈ G2;
Master secret key sk-m ∈ Z; Master public key pk-m = pubsk-m∈G2 .

Computes sk-b = id-ask-m...
Sends sk-b to Bob

Alice

Secret identity id-a ∈ G1

Choose random r ∈ Z...
Compute enc-id-a = P(id-a, pk-m)...

Sends (pubr, enc-id-ar) to Bob

Bob

Receives secret key sk-b ∈ G1 from PKG
Receives (pubr, enc-id-ar) from Alice

Compute ver = P(sk-b, pubr)

Verify that ver = enc-id-ar †

† Bilinearity:

P(sk-b, pubr) = P(id-ask-m,pubr) = P(id-a, pub)sk-m·r = P(id-a, pubsk-m)r
= P(id-a, pk-m)r.
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What is a cryptographic pairing?

For this protocol idea to be useful, we need:

I Fast exponentiation in G1, G2, and G3. Examples:
I Unit groups of finite fields (square-and-multiply).
I Elliptic curve groups (double-and-add).

I Hard discrete logarithms problems in G1, G2, and G3.
I Bilinearity of P complexity of DLP in each of G1, G2, and

G3 is the fastest algorithm for solving DLP in any of G1, G2,
or G3.

I An explicit pairing formula.
I Example: the Weil pairing with G1 and G2 as elliptic curve

groups and G3 as a finite field group.
I Fast pairing computation.

I Instances of the Weil pairing can be efficiently computed
with Miller’s algorithm.
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How hard is the discrete logarithm problem?

g ∈ G (any):
g ∗ · · · ∗ g︸ ︷︷ ︸

n times
DLP solver n

Complexity: depends on G

g ∈ F∗pk :
g ∗ · · · ∗ g︸ ︷︷ ︸

n times
Index calculus+ n

Complexity:
if p large, non-special, and k small, Lpk(1/2, c)

for most pairing instances, p is special, giving Lpk(1/3, c)

g ∈ E(Fpk):
g ∗ · · · ∗ g︸ ︷︷ ︸

n times
Pollard-ρ n

Complexity:
if p large, non-special, and k small, for most E,

O(
√

r), where r is the largest prime dividing #E(Fpk)
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Pairing-friendly families

Main idea: construct examples of pairings G1×G2 → G3 where
the complexity of DLP is about the same in each group.

I Many constructions: BN curves, BLS curves, [GMT19],
[FM19], [BEG19], . . .

I Disclaimer for papers before 2016: New
improvements/refinements to the attack methods in 2016.
See eg. [BD17] for an overview.

I Worst-case asymptotic complexity went from Lpk [1/3, 1.923]
to Lpk [1/3, 1.526].
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That’s cute, but what about quantum
computers?
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Cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver

Problems:
I Communication channels (adversaries) store and spy on

our data
I Communication channels are modifying our data

Goals:
I Confidentiality despite Eve’s espionage.
I Integrity: recognising Eve’s espionage.

(Slide mostly stolen from Tanja Lange)
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Post-quantum cryptography

Sender Channel with eavesdropper ‘Eve’ Receiver

I Eve has a quantum computer.
I Harry and Meghan don’t have a quantum computer.

(Slide mostly stolen from Tanja Lange)
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Why does Eve need a quantum computer?

I Asymmetric cryptography typically relies on the discrete
logarithm problem being slow to solve:
with Shor’s quantum algorithm this is no longer true.

 will make current asymmetric algorithms obselete.
I Symmetric cryptography typically has less mathematical

structure so quantum computers are less devastating,
but Grover’s quantum algorithm still speeds up attacks.
 reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in
asymmetric cryptography with something quantum-resistant.
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Where are we now?

I Post-quantum cryptography discussion dominated by
NIST competition for standardization.

I This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough—and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain—that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.
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Recall: Diffie–Hellman key exchange ’76

Public parameters:
I a prime p (experts: uses F∗p , today also elliptic curves)

I a number g (mod p) (nonexperts: think of an integer less than p)

Alice Eve Bob

skA
random←−−− {0...p−1} skB

random←−−− {0...p−1}

pkA = gskA pkB = gskB

ss := (gskB)skA ss := (gskA)skB

I Alice and Bob agree on a shared secret key ss, then they
can use that to encrypt their messages.

I Eve sees pkA = gskA , pkB = gskB ; can’t find skA, skB, ss.

Broken by Shor!
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Alternatives

Ideas to replace Diffie-Hellman key exchange:

I Code-based encryption: uses error correcting codes.
Short ciphertexts, large public keys.

I Hash-based signatures: uses hard-to-invert functions.
Well-studied security, small public keys.

I Isogeny-based encryption and signatures: based on
finding maps between (elliptic) curves.
Smallest keys, slow encryption.

I Lattice-based encryption and signatures: based on finding
short vectors in high-dimensional lattices.
Fastest encryption, huge keys, slow signatures.

I Multivariate signatures: based on solving simulateneous
multivariate equations.
Short signatures, large public keys, slow.
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Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

We’re going to do maths.

18 / 43



Maths background #1/3: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].
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The degree of a separable∗ isogeny is the size of its kernel.

Example #3: (x, y) 7→
(

x3−4x2+30x−12
(x−2)2 , x3−6x2−14x+35

(x−2)3 · y
)

defines a degree-3 isogeny of the elliptic curves

{y2 = x3 + x} −→ {y2 = x3 − 3x + 3}
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Maths background #2/3: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
20 / 43
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Math slide #3/3: Supersingular isogeny graphs

Let p be a prime, q a power of p, and ` a positive integer /∈ pZ.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Let S 63 p denote a set of prime numbers.

The supersingular S-isogeny graph over Fq consists of:
I vertices given by isomorphism classes of supersingular

elliptic curves,
I edges given by equivalence classes1 of `-isogenies (` ∈ S),

both defined over Fq.

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.
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The beauty and the beast

Components of the isogeny graphs look like this:

S = {3, 5, 7}, q = 419 S = {2, 3}, q = 4312
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The beauty and the beast

For key exchange/KEM, there are two families of systems:

q = p

CSIDH ["si:­saId]
https://csidh.isogeny.org

q = p2

SIDH
https://sike.org

22 / 43
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Isogeny graphs at the CSIDH
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

I Idea to replace DLP: replace exponentiation

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H that acts via

isogenies.
I The action of h ∈ H on S moves the elliptic curves one step

around one of the cycles.

25 / 43



Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191
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E199 E390 E29
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E40
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E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Diffie and Hellman go to the CSIDH

Alice Bob
[+,−,+,−] [+,+,−,+]
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an `-isogeny
from E. To do this:

I Find a point P of order ` on E.

I Let E/Fp be supersingular and p ≥ 5. Then E(Fp) ∼= Cp+1 or
C2 × C(p+1)/2.

I Suppose we have found P = E(Fp) of order p + 1 or
(p + 1)/2.

I For every odd prime `|(p + 1), the point p+1
` P is a point of

order `.

I Compute the isogeny with kernel {P, 2P, . . . , `P} using
Vélu’s formulas∗ (implemented in Sage).

I Given a Fp-rational point of order `, the isogeny
computations can be done over Fp.
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Representing nodes of the graph

I Every node of G`i is

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!
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Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.
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Quantum Security
Original proposal in 2018 paper: Fp ≈ 512 bits.

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).

I [BLMP19] computes one query (i.e. CSIDH-512 group
action) using 765325228976 ≈ 0.7 · 240 nonlinear bit
operations.

I Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 216 queries using 240 bits of quantum
accessible classical memory.

I For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 256 qubit operations.

I Overheads from error correction, high quantum memory
etc., not yet understood.
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Venturing beyond the CSIDH

A selection of advances since original publication (2018):
I CSURF [CD19]: exploiting 2-isogenies.
I sqrtVelu [BDLS20]: square-root speed-up on computation

of large-degree isogenies.
I Radical isogenies [CDV20]: significant speed-up on

isogenies of small-ish degree.
I Some work on different curve forms (e.g. Edwards, Huff).
I Knowledge of End(E0) and End(EA) breaks CSIDH in

classical polynomial time [Wes21].
I The SQALE of CSIDH [CCJR22]: carefully constructed

CSIDH parameters less susceptible to Kuperberg’s
algorithm.

I CTIDH [B2C2LMS2]: Efficient constant-time CSIDH-style
construction.
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Now:

SIDH
Supersingular Isogeny Diffie–Hellman
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Diffie-Hellman: High-level view

g ga

gb ga∗b

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points

Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!
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SIDH in one slide
Public parameters:

I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉
s := j

(
(E/A)/B′

)
Break it by: given public info, find secret key–ϕA or just A.
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Security

Hard Problem:
Given

I supersingular public elliptic curves E0/Fp2 and EA/Fp2

connected by a secret 2n-degree isogeny ϕA : E0 → EA,
and

I the action of ϕA on the 3m-torsion of E0,
find the secret key recover ϕA.

I Knowledge of End(E0) and End(EA) is sufficient to
efficiently break it.

I Active attacker can recover secret.
I In SIDH, End(E0) is fixed and 3m ≈ 2n ≈ √p.
I If 3m > 2n or 3m, 2n >

√p, security claims are weakened.
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Security of SIKE

I Best known attacks on SIKE, where E0/Fp : y2 = x3 + x and
2n ≈ 3m are on the Isogeny Problem:

I The isogeny problem: given two elliptic curves, find an
isogeny between them.

I Best classical attack: meet-in-the-middle O(p1/4).
I Best quantum attack: meet-in-the-middle + Grover

O(p1/4), but slightly better in practise.
I No commutative group action to exploit here∗
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What about signatures?
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Ex: CSI-FiSh (S ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren ‘19)
Identification scheme from H × S→ S:

Prover Public Verifier
E ∈ S, li ∈ H

si ← $Z
sk =

∏
li

si ,

pk = sk ∗ E
pk // pk

c← $ {0, 1}c
ppti ← $Z

esk =
∏

li
ti ,

epk1 = esk ∗ E,

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).

After k challenges c, an imposter succeeds with prob 2−k.
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Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof
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Summary and overview∗

Classical:
I ECDLP. Fast, low memory, robust, well-studied, broken by

Shor. Building block in TLS, Signal protocol, etc.

I Pairings. Low memory, flexible, advanced protocols.
Post-quantum:

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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