Elliptic-curve and isogeny-based cryptography

Chloe Martindale

University of Bristol

Summer School on real-world crypto and privacy Sibenik 2022

Why elliptic-curve cryptography (ECC)?

ECC is widely deployed across many use cases. Why? It is:

- ► Low memory
- ► Fast
- ► Flexible
 - ► TLS, AKE, Signal protocol, IBE (using pairings), ...
- Robust

Ex: WhatsApp (uses Signal protocol)

Public Key Types

- Identity Key Pair A long-term Curve25519 key pair, generated at install time.
- Signed Pre Key A medium-term Curve25519 key pair, generated at install time, signed by the Identity Key, and rotated on a periodic timed basis.
- One-Time Pre Keys A queue of Curve25519 key pairs for one time use, generated at install time, and replenished as needed.

Session Key Types

- Root Key A 32-byte value that is used to create Chain Keys.
- Chain Key A 32-byte value that is used to create Message Keys.
- Message Key An 80-byte value that is used to encrypt message contents. 32 bytes are used for an AES-256 key, 32 bytes for a HMAC-SHA256 key, and 16 bytes for an IV.

• A group G comes with a group operation *.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

• If
$$g \in \mathbb{G}$$
 and $n \in \mathbb{Z}_{\geq 0}$, write $g^n = \underbrace{g * \cdots * g}_{n \text{ times}}$.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

• If
$$g \in \mathbb{G}$$
 and $n \in \mathbb{Z}_{\geq 0}$, write $g^n = \underbrace{g * \cdots * g}_{n \text{ times}}$.
• eg. $(3 \pmod{5})^2 = 3 \cdot 3 \pmod{5}$.

Pairings are bilinear maps of groups.

Pairings are bilinear maps of groups. In particular:

$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \end{array}$$

Pairings are bilinear maps of groups. In particular:

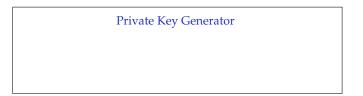
$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \\ (g^a,h^b) & \mapsto & P(g,h)^{ab} \end{array}$$

Pairings are bilinear maps of groups. In particular:

$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \\ (g^a,h^b) & \mapsto & P(g,h)^{ab} \end{array}$$

Why is this useful?

Scenario: Bob authenticates an anonymous Alice.

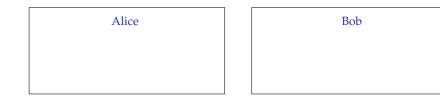


Alice	Bob

Scenario: Bob authenticates an anonymous Alice.

Use a pairing
$$P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$$

Private Key Generator



Scenario: Bob authenticates an anonymous Alice.

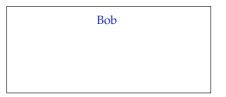
Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

$$\label{eq:alice's secret identity id-a} \begin{split} &\operatorname{Alice's secret identity id-a} \in \mathbb{G}_1; \operatorname{Public pub} \in \mathbb{G}_2; \\ &\operatorname{Master secret key } sk-m \in \mathbb{Z}; \operatorname{Master public key } pk-m = pub^{sk-m \in \mathbb{G}_2}. \end{split}$$

Alice

Secret identity $id-a \in \mathbb{G}_1$



Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-}a\in \mathbb{G}_1; \mbox{Public pub}\in \mathbb{G}_2;\\ \mbox{Master secret key $k-m\in \mathbb{Z}$; Master public key $k-m=pub}^{sk-m\in \mathbb{G}_2}.\\ \mbox{Computes $k-b=id-a}^{sk-m}... \end{array}$

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key $k-m \in \mathbb{Z}$; Master public key $pk-m = pub^{sk-m} \in \mathbb{G}_2$.}\\ \mbox{Computes $k-b = id-} a^{sk-m}...\\ \mbox{Sends $sk-b to Bob} \end{array}$

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends $(pub^r, enc-id-a^r)$ to Bob

Bob	

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG Receives (pub^r , $enc-id-a^r$) from Alice

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG Receives (pub^r , enc-id- a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id- a^r

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id-a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id-a^r) to Bob

[†] Bilinearity:

$$P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m},\mathsf{pub}^r})$$

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id-a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id-a^r) to Bob

[†] Bilinearity:

$$P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m},\mathsf{pub}^r)} = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r}$$

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id-a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id-a^r) to Bob

[†] Bilinearity:

 $P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m},\mathsf{pub}^r}) = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r} = P(\mathsf{id-a},\mathsf{pub}^{\mathsf{sk-m})^r})$

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG Receives $(pub^r, enc-id-a^r)$ from Alice Compute $ver = P(sk-b, pub^r)$ Verify that $ver = enc-id-a^r$ [†]

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-} a \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key sk-} m \in \mathbb{Z}; \mbox{Master public key pk-} m = pub^{sk-m} \in \mathbb{G}_2.\\ \mbox{Computes sk-} b = id-a^{sk-m}..\\ \mbox{Sends sk-} b to Bob \end{array}$

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

[†] Bilinearity:

$P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m},\mathsf{pub}^r)} = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r} = P(\mathsf{id-a},\mathsf{pub}^{\mathsf{sk-m})^r} = P(\mathsf{id-a},\mathsf{pk-m})^r.$

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG Receives (pub^r , enc-id- a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id- a^r [†]

For this protocol idea to be useful, we need:

▶ Fast exponentiation in G₁, G₂, and G₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.

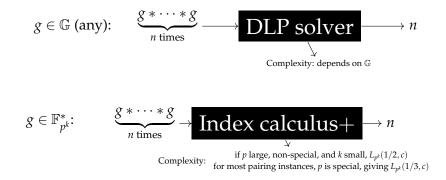
- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.
- Fast pairing computation.

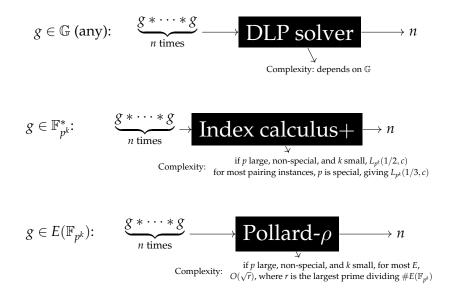
- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.
- Fast pairing computation.
 - Instances of the Weil pairing can be efficiently computed with Miller's algorithm.

How hard is the discrete logarithm problem?

How hard is the discrete logarithm problem?



How hard is the discrete logarithm problem?



Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

► Many constructions: BN curves, BLS curves, [GMT19], [FM19], [BEG19], ...

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► Many constructions: BN curves, BLS curves, [GMT19], [FM19], [BEG19], ...
- Disclaimer for papers before 2016: New improvements/refinements to the attack methods in 2016. See eg. [BD17] for an overview.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► Many constructions: BN curves, BLS curves, [GMT19], [FM19], [BEG19], ...
- Disclaimer for papers before 2016: New improvements/refinements to the attack methods in 2016. See eg. [BD17] for an overview.
 - ► Worst-case asymptotic complexity went from L_{p^k}[1/3, 1.923] to L_{p^k}[1/3, 1.526].

That's cute, but what about quantum computers?

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Problems:

- Communication channels (adversaries) store and spy on our data
- Communication channels are modifying our data

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Problems:

- Communication channels (adversaries) store and spy on our data
- Communication channels are modifying our data

Goals:

- Confidentiality despite Eve's espionage.
- ► Integrity: recognising Eve's espionage.

(Slide mostly stolen from Tanja Lange)

Post-quantum cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Post-quantum cryptography

Sender Channel with eavesdropper 'Eve' Receiver

- Eve has a quantum computer.
- ► Harry and Meghan don't have a quantum computer.

(Slide mostly stolen from Tanja Lange)

 Asymmetric cryptography typically relies on the discrete logarithm problem being slow to solve: with Shor's quantum algorithm this is no longer true.

 Asymmetric cryptography typically relies on the discrete logarithm problem being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.

- Asymmetric cryptography typically relies on the discrete logarithm problem being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.

- Asymmetric cryptography typically relies on the discrete logarithm problem being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.
 ~> reduces security of current symmetric algorithms.

- Asymmetric cryptography typically relies on the discrete logarithm problem being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.
 ~> reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in asymmetric cryptography with something quantum-resistant.

Where are we now?

 Post-quantum cryptography discussion dominated by NIST competition for standardization.

Where are we now?

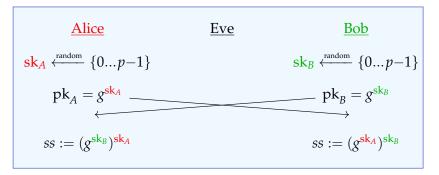
- Post-quantum cryptography discussion dominated by NIST competition for standardization.
- This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough—and the time frame for transitioning to a new security protocol is sufficiently long and uncertain—that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.

Recall: Diffie–Hellman key exchange '76

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $g \pmod{p}$ (nonexperts: think of an integer less than p)

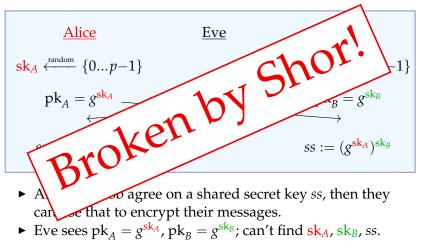


- Alice and Bob agree on a shared secret key *ss*, then they can use that to encrypt their messages.
- Eve sees $pk_A = g^{sk_A}$, $pk_B = g^{sk_B}$; can't find sk_A , sk_B , *ss*.

Recall: Diffie–Hellman key exchange '76

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $g \pmod{p}$ (nonexperts: think of an integer less than p)



Ideas to replace Diffie-Hellman key exchange:

 Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
 Fastest encryption, huge keys, slow signatures.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
 Fastest encryption, huge keys, slow signatures.
- Multivariate signatures: based on solving simulateneous multivariate equations.
 Short signatures, large public keys, slow.

Problem: It is trivial to find paths (subtract coordinates). What do?

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\, \wp \,$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do maths.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$ is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves $\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = \varphi \circ \widehat{\varphi} = [\deg \varphi].$

Maths background #2/3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Maths background #2/3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Maths background #2/3: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightarrow need to make sure extensions stay small for desired #*G* \rightarrow this is why we use supersingular curves!

¹(up to isomorphism of E')

Math slide #3/3: Supersingular isogeny graphs

Let *p* be a prime, *q* a power of *p*, and ℓ a positive integer $\notin p\mathbb{Z}$.

An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!

Math slide #3/3: Supersingular isogeny graphs

Let *p* be a prime, *q* a power of *p*, and ℓ a positive integer $\notin p\mathbb{Z}$.

An elliptic curve E/\mathbb{F}_q is *supersingular* if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightarrow easy way to control the group structure by choosing p!

Let $S \not\supseteq p$ denote a set of prime numbers.

The supersingular *S*-isogeny graph over \mathbb{F}_q consists of:

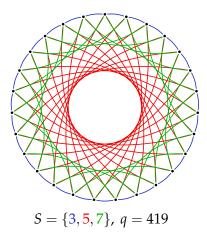
 vertices given by isomorphism classes of supersingular elliptic curves,

► edges given by equivalence classes¹ of ℓ -isogenies ($\ell \in S$), both defined over \mathbb{F}_q .

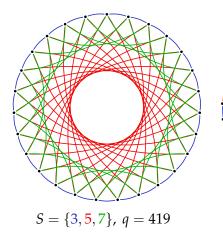
¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

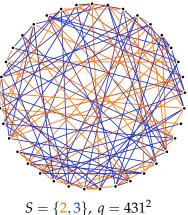
Components of the isogeny graphs look like this:

Components of the isogeny graphs look like this:

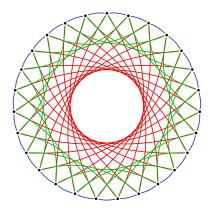


Components of the isogeny graphs look like this:





For key exchange/KEM, there are two families of systems:

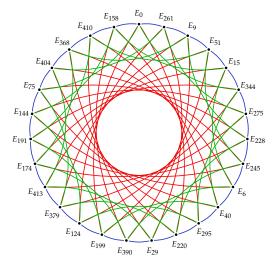


 $q = p^2$

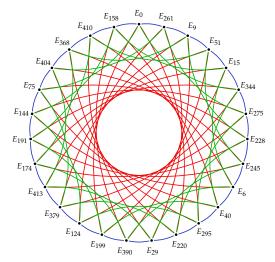
SIDH https://sike.org

q = p

Isogeny graphs at the CSIDH

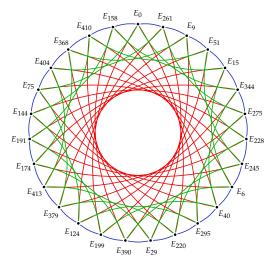


Isogeny graphs at the CSIDH



Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Isogeny graphs at the CSIDH



Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, **5**-, and 7-isogenies.

Quantumifying Exponentiation

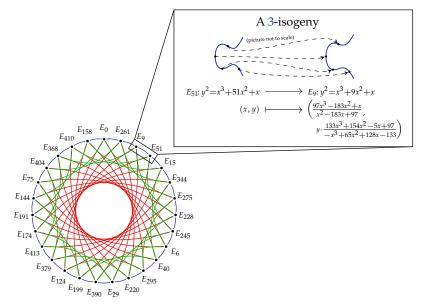
► Idea to replace DLP: replace exponentiation

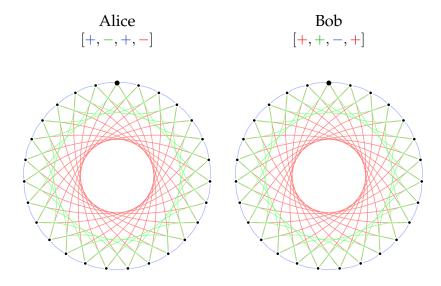
$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

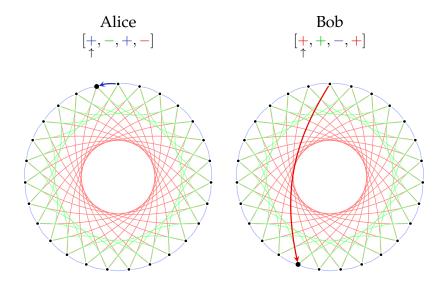
by a group action on a set.

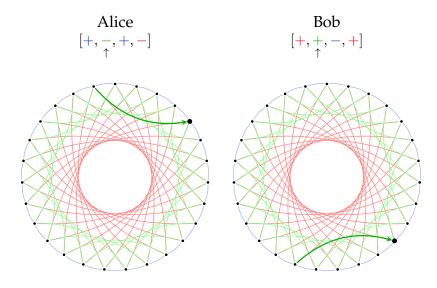
- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- ► Replace Z by a commutative group *H* that acts via isogenies.
- ► The action of *h* ∈ *H* on *S* moves the elliptic curves one step around one of the cycles.

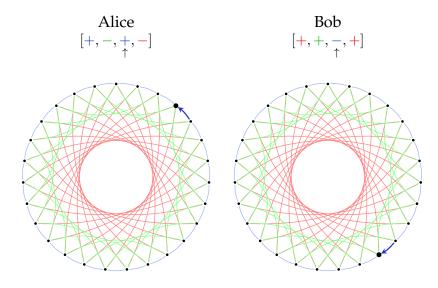
Graphs of elliptic curves

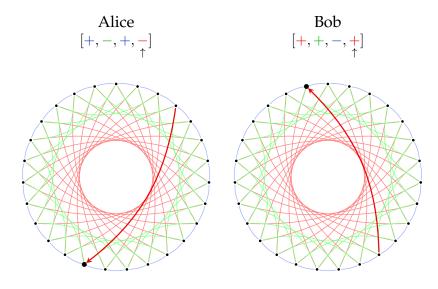


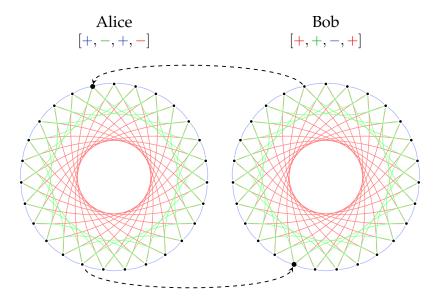


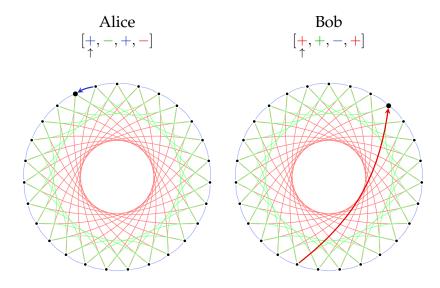


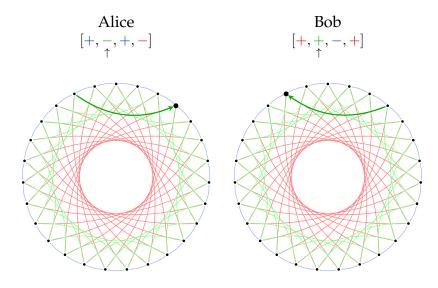


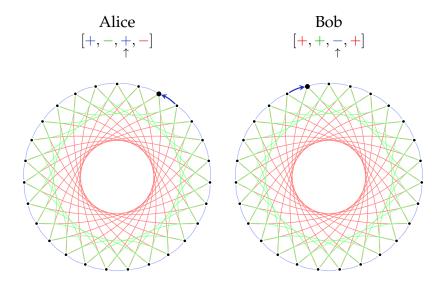


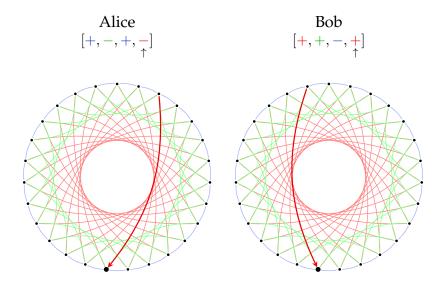


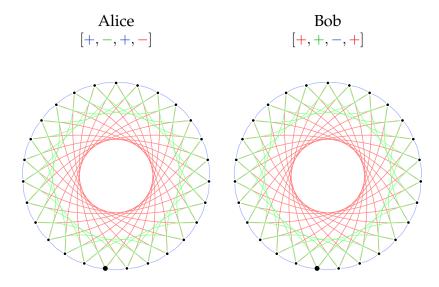












To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

• Find a point *P* of order ℓ on *E*.

▶ Compute the isogeny with kernel {P, 2P,..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - Let E/\mathbb{F}_p be supersingular and $p \ge 5$.

▶ Compute the isogeny with kernel {P, 2P,..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an ℓ -isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - Let *E*/𝔽_p be supersingular and *p* ≥ 5. Then *E*(𝔽_p) ≃ *C*_{p+1} or *C*₂ × *C*_{(p+1)/2}.

▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - ► Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
- ► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - ► Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - ► For every odd prime $\ell | (p + 1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ .
- ► Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of *E*, we have to compute an l-isogeny from *E*. To do this:

- Find a point *P* of order ℓ on *E*.
 - ► Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- Compute the isogeny with kernel {P,2P,..., lP} using Vélu's formulas* (implemented in Sage).
 - Given a 𝔽_p-rational point of order ℓ, the isogeny computations can be done over 𝔽_p.

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

⇒ Can compress every node to a single value $A \in \mathbb{F}_p$. ⇒ Tiny keys!

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

• About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p + 1 points. Easy Monte-Carlo algorithm: Pick random *P* on E_A and check $[p + 1]P = \infty$.¹

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

Original proposal in 2018 paper: $\mathbb{F}_p \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

Original proposal in 2018 paper: $\mathbb{F}_p \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

(and much more).

► [BLMP19] computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.

Original proposal in 2018 paper: $\mathbb{F}_p \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

- ► [BLMP19] computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.

Original proposal in 2018 paper: $\mathbb{F}_p \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

- ► [BLMP19] computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.
- For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2⁵⁶ qubit operations.

Original proposal in 2018 paper: $\mathbb{F}_p \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

- ► [BLMP19] computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.
- For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2⁵⁶ qubit operations.
- Overheads from error correction, high quantum memory etc., not yet understood.

Venturing beyond the CSIDH

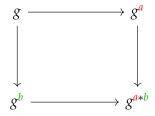
A selection of advances since original publication (2018):

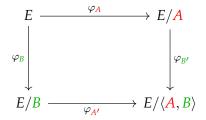
- CSURF [CD19]: exploiting 2-isogenies.
- sqrtVelu [BDLS20]: square-root speed-up on computation of large-degree isogenies.
- Radical isogenies [CDV20]: significant speed-up on isogenies of small-ish degree.
- Some work on different curve forms (e.g. Edwards, Huff).
- ► Knowledge of End(*E*₀) and End(*E*_A) breaks CSIDH in classical polynomial time [Wes21].
- ► The SQALE of CSIDH [CCJR22]: carefully constructed CSIDH parameters less susceptible to Kuperberg's algorithm.
- CTIDH [B²C²LMS²]: Efficient constant-time CSIDH-style construction.

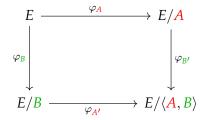
Now: SIDH

Supersingular Isogeny Diffie-Hellman

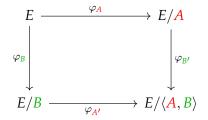
Diffie-Hellman: High-level view



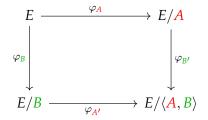




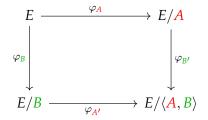
► Alice & Bob pick secret subgroups *A* and *B* of *E*.



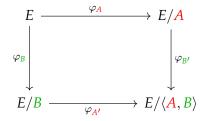
- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.
- ▶ Alice and Bob transmit the values *E*/*A* and *E*/*B*.



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A \colon E \to E/A$; Bob computes $\varphi_B \colon E \to E/B$.
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A \colon E \to E/A$; Bob computes $\varphi_B \colon E \to E/B$.
- Alice and Bob transmit the values E/A and E/B.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

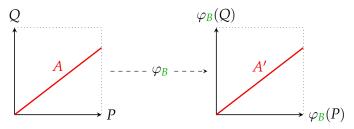
Alice knows only *A*, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only *A*, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

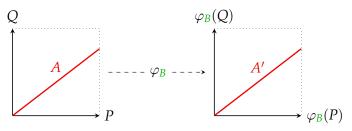


SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!



- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$	$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle$ s := j((E/B)/A')	$B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$

Break it by: given public info, find secret key– φ_A or just *A*.

Security

Hard Problem:

Given

- ► supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^{*n*}-degree isogeny $\varphi_A : E_0 \to E_A$, and
- the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

Security

Hard Problem:

Given

- ► supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^{*n*}-degree isogeny $\varphi_A : E_0 \to E_A$, and
- the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

- ► Knowledge of End(*E*₀) and End(*E*_{*A*}) is sufficient to efficiently break it.
- Active attacker can recover secret.
- In SIDH, $\operatorname{End}(E_0)$ is fixed and $3^m \approx 2^n \approx \sqrt{p}$.
- If $3^m > 2^n$ or $3^m, 2^n > \sqrt{p}$, security claims are weakened.

• Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:

- Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - The isogeny problem: given two elliptic curves, find an isogeny between them.

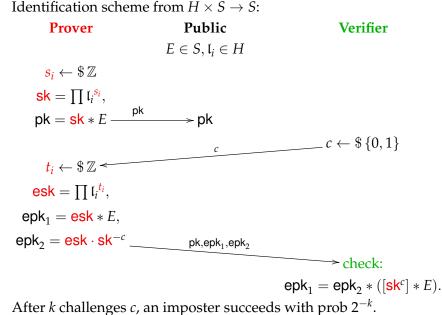
- Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O(p^{1/4})$.

- Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O(p^{1/4})$.
- ► Best quantum attack: meet-in-the-middle + Grover O(p^{1/4}), but slightly better in practise.

- Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O(p^{1/4})$.
- ► Best quantum attack: meet-in-the-middle + Grover O(p^{1/4}), but slightly better in practise.
- ► No commutative group action to exploit here*

What about signatures?

Ex: CSI-FiSh (S '06, D-G '18, Beullens-Kleinjung-Vercauteren '19)



40 / 43

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find $\mathfrak{a} \in H$ such that $\mathfrak{a} * E = E'$.

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E \downarrow E_{pk}

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

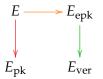
(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:



Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Classical:

► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.

Classical:

- ► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.
- ► Pairings. Low memory, flexible, advanced protocols.

Classical:

- ► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.
- ► Pairings. Low memory, flexible, advanced protocols. Post-quantum:
 - SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.

Classical:

- ► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.
- ► Pairings. Low memory, flexible, advanced protocols.

Post-quantum:

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.

Classical:

- ► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.
- ► Pairings. Low memory, flexible, advanced protocols.

Post-quantum:

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.

Classical:

- ► ECDLP. Fast, low memory, robust, well-studied, broken by Shor. Building block in TLS, Signal protocol, etc.
- ► Pairings. Low memory, flexible, advanced protocols.

Post-quantum:

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.
- SQISign '20 Digital signature. Small, slow, clean security assumption, no known attack avenues.

Thank you!

References

 $[B^2C^2LMS^2]$ [BD17] [BDLS20] [BEG19] [BLMP19] [CCJR22] [CD19] [CDV20] [FM19] [GMT19] [Wes21]

ctidh.isogeny.org ia.cr/2017/334 velusqrt.isogeny.org ia.cr/2019/485 quantum.isogeny.org ia.cr/2020/1520 ia.cr/2019/1404 ia.cr/2020/1108 ia.cr/2019/555 ia.cr/2019/431 ia.cr/2021/1583