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What is this all about?
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally IF;, today also elliptic curves)
» an element g € G of prime order p
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Diffie-Hellman key exchange 76

Public parameters:
» a finite group G (traditionally IF;, today also elliptic curves)
» an element g € G of prime order p

Alice

Fundamental reason this works: -% and -’ are commutative!
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Graph walking Diffie-Hellman?

¥

Problem:
It is trivial to find paths (subtract coordinates).

What to do?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

.%

We’re going to do maths.
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Maths slide 1/5: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation
E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.
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Maths slide 1/5: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E: y* =x°+ax+b.

A point on E is a solution to this equation or the ‘fake” point co.

E is an abelian group: we can ‘add” points.
» The neutral element is oco.

» The inverse of (x,y) is (x, —y).

e 0
» The sum of (x1,y1) and (x2,¥2) is e 4)‘;6;),%6
(2785
()\2 — X1 — X7, )\(le —+ X7 — )\2) — y]) sz
Sx%—i—u

where A = 2% if x; £ x; and A =

o otherwise.

2]/1
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Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.
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Maths slide 2/5: Isogenies (edges)

» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map E — E’ that is:

Example #1: For each m # 0, the multiplication-by-m map
[m]: E—E
is a degree-m? isogeny. If m # 0 in the base field, its kernel is
Em| = Z/m x Z/m.
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Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any a and b, the map ¢: (x,y) — (—x,vV—1-y)
defines a degree-1 isogeny of the elliptic curves
{» =x+ax+b} — {y*=x>+ax—b}.

It is an isomorphism; its kernel is {co}.
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Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: (x,1) (x3—4x2+30x—12 B—6x2—14x+35 y)

(=22 (x-2)
defines a degree-3 isogeny of the elliptic curves

{(P=2>+x} — {=x>-3x+3}
over Fy;. Its kernel is {(2,9), (2, —9), co}.
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Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E — E’ that is:
» given by rational functions.

» a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny E — E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ¢: E — E’ has a unique dual isogeny ¢: E' — E
characterized by o ¢ = ¢ 0 o = [deg ¢].
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Maths slide 3/5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

!(up to isomorphism of E’)
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Maths slide 3/5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique!
separable isogeny ¢ : E — E’ with kernel G.

The curve E’ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ¢ and E/G are also defined over k.

Vélu '71:
Formulas for computing E/G and evaluating ¢¢ at a point.

Complexity: O(#G) ~» only suitable for small degrees.

Vélu operates in the field where the points in G live.

~+» need to make sure extensions stay small for desired #G
~+ this is why we use supersingular curves!

!(up to isomorphism of E’)
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Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny E — E,
or the zero map.
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Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny E — E,
or the zero map.

Example: The multiplication-by-m map
[m]: E— E
is an endomorphism. If m # 0 in the base field, its kernel is

E[m| = Z/mZ x 7./ mZ.

» A point P € E[m] is called an m-torsion point.

» The group G = (P) generated by an m-torsion point
P € E[m] is the kernel of an m-isogeny written

f:E—EJG.
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Maths slide 5/5: Supersingular isogeny graphs

E/F, is supersingular if it has no points of order p.
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Maths slide 5/5: Supersingular isogeny graphs

E/F, is supersingular if it has no points of order p.

Let S # p denote a set of prime numbers.
For this talk: the supersingular S-isogeny graph consists of:

» vertices given by isomorphism classes of supersingular
elliptic curves,

» edges E — E' that represent an (-isogeny E — E’ and its
dual E' — E o where ¢ € S (up to isomorphism)

both defined over F,,.
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SIDH as an isogeny graph

» Vertices: isomorphism classes of elliptic curves defined
over F,,.

» Edges: 2- and 3-isogenies of elliptic curves (up to some
equivalence).
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SIDH as an isogeny graph

» Vertices: isomorphism classes of elliptic curves defined
over F),.

» Edges: 2- and 3-isogenies of elliptic curves (up to some
equivalence).

2 and 3-isogenies of elliptic curves over Fyz;>
12/28



Now:

SIDH



SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]
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Alice public Bob

p e (0. 271y b (0..37-1)
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SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob
g A 2P b &2 £0...3m -1}
A= (Pa+ [a]Qa) B := (Pp + [b]QB)
compute p4: E — E/A compute pp: E — E/B

E/A, va(P), va(Qs) E/B, vp(Pa), v8(Qa)
P
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Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
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Alice public Bob
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SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢4 (Qs) E/B, ¢5(Pa), ¢5(Qa)
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A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Pg) + [blpa(Qs))
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SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢4 (Qs) E/B, ¢5(Pa), ¢5(Qa)

e T
A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Pg) + [b]pa(Qp))
s .= j((E/B)/A") s:=j((E/A)/B)

Break it by: given public info, find secret key: ¢4 (or just A).
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Here’s some things that don’t break it...
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Extra points

Aim: given points Pg, Qp on E, the image E/A of the secret
isogeny ¢4 : E — E/A, and the images 4 (Pp) and ¢5(Qp),
find PA-

Fact: with the parameters used in SIDH, the images ¢4 (Pg) and
©p(Qp) uniquely determine the secret isogeny ¢ 4.
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

~- Rational function interpolation?
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.

~- Rational function interpolation?

...the polynomials are of exponential degree ~ ,/p.

):

§

can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

» No known algorithms for interpolating and decomposing
at the same time.

17 /28



Extra points: Group theory?

» Recall: we know the image under ¢4 of 3"-torsion points
P B and QB'
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Extra points: Group theory?

» Recall: we know the image under ¢4 of 3"-torsion points
P B and QB'

» Can we extrapolate the image under ¢4 of some other
(coprime) ¢"-torsion points and exploit it?

e.g. we win if we get the action of ¢4 on the 2"-torsion.

~ There’s an isomorphism of groups

E(F,) = (Z/2")* x (Z/3™)>.

p

= can’t learn anything about 2" from 3" using groups alone.

(Annoying: This shows up in many disguises.)

18 /28



Extra points: Petit’s endomorphisms

» For typical SIDH parameters, we know the endomorphism
ring End(Ey).
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Extra points: Petit’s endomorphisms

» For typical SIDH parameters, we know the endomorphism
ring End(Ey).

» Going back and forth to Ej yields endomorphisms of E4:

S /QOA\
\ /

~+ We can compute the image of our 3"-torsion points on E4
under these endomorphisms.

» Idea: Find an appropriate endomorphism 7 of degree 3"'r;
recover 3"-part as above; brute-force the remaining part.
~+ image of r-torsion point under ¢4
—> (details) = Recover the secret @4.

~ To get r small enough to be an attack, we have to change
the SIDH parameters so that Alice’s isogeny has a much
higher degree than Bob’s.

19/28



Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

!Check eprint.iacr.org/2020/633 Section 8 for a generalised approach
that has more of a chance...

20/28


eprint.iacr.org/2020/633

Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

o
» Petit’s approach cannot be expected to work for ‘real’

(symmetric, two-party) SIDH.!

—

» Life sucks.

!Check eprint.iacr.org/2020/633 Section 8 for a generalised approach

that has more of a chance...
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eprint.iacr.org/2020/633

The pure isogeny problem

Fundamental problem: given supersingular E and E'/IF,» that
are ("-isogeneous, compute an isogeny ¢ : E — E'.
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The pure isogeny problem

Example
Choose

E/F431 : y2 =x3 +1 and E//IF431 : yZ =x3 + 291x + 298.

22/28



The pure isogeny problem
Example
Choose
E/F431 : y2 =x3 +1 and E//IF431 : yZ =x3 + 291x + 298.

These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

22/28



The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 +1 and E//IF431 : yZ = x3 4+ 291x + 298.
These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

» Solution (a): try all nine possible order 4 kernels and use
Vélu's formulas to find f.

22/28



The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 +1 and E//IF431 : yZ = x3 4+ 291x + 298.

These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

» Solution (a): try all nine possible order 4 kernels and use
Vélu's formulas to find f.

» Solution (b): try all three possible order 2 kernels from
both E and E’ and check when the codomain is the same.

22/28



The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 +1 and E//IF431 : yZ = x3 4+ 291x + 298.

These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

» Solution (a): try all nine possible order 4 kernels and use
Vélu's formulas to find f.

» Solution (b): try all three possible order 2 kernels from
both E and E’ and check when the codomain is the same.

Solution (b) is meet-in-the-middle: complexity O(p'/4).

22/28



Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs?

3-isogenies

nodes up to Fy31-isomorphism
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Exploiting subgraphs?

3-isogenies 3-isogenies

nodes up to Fy3;-isomorphism nodes up to Fy3i-isomorphism

Kuperberg’s subexponential quantum algorithm to compute a
hidden shift applies to this! Complexity: L,[1/2]. Finding
nearest node in subgraph costs... O(p'/?). =~

(Delfs-Galbraith, Biasse-Jao-Sankar)

24/28



More graphs defined over I,
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This picture is very unlikely to be accurate.
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More graphs defined over F,

» The associated graph of 2-dimensional objects is
(heuristically) O(,/p) cycles of length O(,/p).

(Superspecial principally polarized abelian surfaces if you care)
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More graphs defined over F,

» The associated graph of 2-dimensional objects is
(heuristically) O(,/p) cycles of length O(,/p).

(Superspecial principally polarized abelian surfaces if you care)

» If your two elliptic curves are in the same cycle,
Kuperberg’s algorithm can find the isogeny in
subexponential time.

» Probability of being in the same cycle: O(1/,/p). ~
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More equivalent categories: lifting to C

Elliptic curves E defined over C
with End(E) =R

Here computing isogenies is easy!

|

Non-supersingular elliptic curves defined over F,
with End(E) =R

Here computing isogenies is harder.
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More equivalent categories: lifting to C
A well-chosen subset of

Elliptic curves E defined over C
with ¢ € End(E)
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|

Supersingular elliptic curves defined over F,
with non-scalar ¢ € End(E)

Here computing isogenies is harder.

» Computing the equivalence is slow.
» Finding a non-scalar endomorphism is hard.
» If you can find non-scalar endomorphisms, SIDH is

probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

27 /28



Thank you!
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