How to not break SIDH ≻

Chloe Martindale¹ Lorenz Panny²

¹University of Bristol ²TU/e

Royal Holloway, 29th April 2021

Conference for Failed Attempts and Insightful Losses

Submission deadline 2021: 1st May (3-page abstract)

What is this all about?

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Problem: It is trivial to find paths (subtract coordinates). What to do?

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\, \wp \,$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do maths.

Maths slide 1/5: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation $E: y^2 = x^3 + ax + b.$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

Maths slide 1/5: Elliptic curves (*nodes*)

An elliptic curve (modulo details) is given by an equation *E*: $y^2 = x^3 + ax + b$.

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- not remember hese formulas! • The sum of (x_1, y_1) and (x_2, y_2) is $(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1)$ where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_2}$ otherwise.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$ is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves $\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$

over \mathbb{F}_{71} . Its kernel is $\{(2,9), (2,-9), \infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = \varphi \circ \widehat{\varphi} = [\deg \varphi].$

Maths slide 3/5: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Maths slide 3/5: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Maths slide 3/5: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightarrow need to make sure extensions stay small for desired #*G* \rightarrow this is why we use supersingular curves!

¹(up to isomorphism of E')

An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism.

An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

 $[m]: E \to E$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$

An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$

• A point $P \in E[m]$ is called an *m*-torsion point.

An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$$

- A point $P \in E[m]$ is called an *m*-torsion point.
- ► The group G = ⟨P⟩ generated by an *m*-torsion point P ∈ E[m] is the kernel of an *m*-isogeny written

$$f: E \to E/G.$$

Maths slide 5/5: Supersingular isogeny graphs

 $E/\overline{\mathbb{F}_p}$ is <u>supersingular</u> if it has no points of order *p*.

Maths slide 5/5: Supersingular isogeny graphs

 $E/\overline{\mathbb{F}_p}$ is <u>supersingular</u> if it has no points of order *p*.

Let $S \not\supseteq p$ denote a set of prime numbers.

For this talk: the supersingular S-isogeny graph consists of:

- vertices given by isomorphism classes of supersingular elliptic curves,
- edges E E' that represent an ℓ -isogeny $E \to E'$ and its dual $E' \to E$, where $\ell \in S$ (up to isomorphism)

both defined over $\overline{\mathbb{F}_p}$.
SIDH as an isogeny graph

- ► Vertices: isomorphism classes of elliptic curves defined over F_p.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

SIDH as an isogeny graph

- ► Vertices: isomorphism classes of elliptic curves defined over F_p.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

2 and 3-isogenies of elliptic curves over \mathbb{F}_{431^2}

Now: SIDH

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ► bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public	Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$		$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$		$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$		$\underbrace{E/B, \varphi_B(P_A), \varphi_B(Q_A)}_{\longrightarrow}$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	<u>public</u>	Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$		$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a]Q_A \rangle$ compute $\varphi_A \colon E \to E/A$		$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$		$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [\mathbf{a}]\varphi_B(Q_A) \rangle$	I	$\beta' := \langle \varphi_{\mathbf{A}}(P_B) + [b]\varphi_{\mathbf{A}}(Q_B) \rangle$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	<u>public</u>	Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$		$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$		$B := \langle P_B + [b]Q_B \rangle$
compute $\varphi_A \colon E \to E/A$		compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$		$\underline{E/B, \varphi_B(P_A), \varphi_B(Q_A)}$
$A' := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle$ s := j((E/B)/A')	1	$ \vec{B}' := \langle \varphi_{\mathbf{A}}(P_B) + [b]\varphi_{\mathbf{A}}(Q_B) \rangle \\ s := j((E/\mathbf{A})/B') $

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	<u>public</u>	Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$		$b {}^{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a]Q_A \rangle$ compute $\varphi_A \colon E \to E/A$		$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$		$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [\mathbf{a}]\varphi_B(Q_A) \rangle$ $s := j((E/B)/A')$	1	$B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$

Break it by: given public info, find secret key: φ_A (or just *A*).

Here's some things that don't break it...

Extra points

Aim: given points P_B , Q_B on E, the image E/A of the secret isogeny $\varphi_A : E \to E/A$, and the images $\varphi_A(P_B)$ and $\varphi_B(Q_B)$, find φ_A .

Fact: with the parameters used in SIDH, the images $\varphi_A(P_B)$ and $\varphi_B(Q_B)$ uniquely determine the secret isogeny φ_A .

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.
 - No known algorithms for interpolating and decomposing at the same time.

• Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) lⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) lⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.
 - $\stackrel{\scriptstyle \rightarrowtail}{\succ}$ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) lⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.
 - $\stackrel{\scriptstyle \rightarrowtail}{\succ}$ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

 \implies can't learn anything about 2^n from 3^m using groups alone. (Annoying: This shows up in many disguises.)

► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

→ We can compute the image of our 3^m -torsion points on E_A under these endomorphisms.

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

- → We can compute the image of our 3^m -torsion points on E_A under these endomorphisms.
- Idea: Find an appropriate endomorphism τ of degree 3^mr; recover 3^m-part as above; brute-force the *r*emaining part.
 → image of *r*-torsion point under φ_A
 ⇒ (details) ⇒ Recover the secret φ_A.
- ☆ To get *r* small enough to be an attack, we have to change the SIDH parameters so that Alice's isogeny has a much higher degree than Bob's.

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 \sim

¹Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.¹

¹Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.¹

► Life sucks.

¹Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

Fundamental problem: given supersingular *E* and E'/\mathbb{F}_{p^2} that are ℓ^n -isogeneous, compute an isogeny $\phi : E \to E'$.

Example Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

 Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- ▶ Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.
 Solution (b) is meet-in-the-middle: complexity Õ(p^{1/4}).

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_p -subgraph:

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_p -subgraph:

2, 3-isogenies over \mathbb{F}_{431^2}

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_p -subgraph:

2, 3-isogenies over \mathbb{F}_{431^2}

2, 3-isogenies over \mathbb{F}_{431}

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}}\textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431} \textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$.

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs...

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-} \textbf{isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431} \textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

This picture is very unlikely to be accurate.

 ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
(Superspecial principally polarized abelian surfaces if you care)

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

More equivalent categories: lifting to \mathbb{C}

 $\left\{ \begin{array}{c} \text{Elliptic curves } E \text{ defined over } \mathbb{C} \\ \text{with } \text{End}(E) = R \end{array} \right\}$ Here computing isogenies is easy! Non-supersingular elliptic curves defined over \mathbb{F}_q with $\operatorname{End}(E) = R$ Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C} A well-chosen subset of Elliptic curves *E* defined over \mathbb{C} with $\phi \in \text{End}(E)$ Here computing isogenies is easy! Supersingular elliptic curves defined over \mathbb{F}_q with non-scalar $\phi \in \operatorname{End}(E)$ Here computing isogenies is harder.

• Computing the equivalence is slow.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.

- Finding a non-scalar endomorphism is hard.
- If you can find non-scalar endomorphisms, SIDH is probably already broken by earlier work (Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

Thank you!