How to not break SIDH \because

Chloe Martindale ${ }^{1} \quad$ Lorenz Panny ${ }^{2}$
${ }^{1}$ University of Bristol $\quad{ }^{2} \mathrm{TU} / \mathrm{e}$

Royal Holloway, 29th April 2021

Conference for Failed Attempts and Insightful Losses

Submission deadline 2021: 1st May (3-page abstract)

What is this all about?

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: ${ }^{a}$ and \cdot^{b} are commutative!

Diffie-Hellman key exchange '76

Public parameters:

- a finite group G (traditionally \mathbb{F}_{p}^{*}, today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: ${ }^{a}$ and ${ }^{b}$ are commutative!

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these not enough for crypto!

Stand back!

We're going to do maths.

Maths slide 1/5: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.

Maths slide 1/5: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

$$
E: y^{2}=x^{3}+a x+b
$$

A point on E is a solution to this equation or the 'fake' point ∞.
E is an abelian group: we can 'add' points.

- The neutral element is ∞.
- The inverse of (x, y) is $(x,-y)$.
- The sum of $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\lambda^{2}-x_{1}-x_{2}, \lambda\left(2 x_{1}+x_{2}-\lambda^{2}\right)-y_{1}\right)
$$

where $\lambda=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ if $x_{1} \neq x_{2}$ and $\lambda=\frac{3 x_{1}^{2}+a}{2 y_{1}}$ otherwise.

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#1: For each $m \neq 0$, the multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is a degree- m^{2} isogeny. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \times \mathbb{Z} / m
$$

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#2: For any a and b, the map $\iota:(x, y) \mapsto(-x, \sqrt{-1} \cdot y)$ defines a degree- 1 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+a x+b\right\} \longrightarrow\left\{y^{2}=x^{3}+a x-b\right\}
$$

It is an isomorphism; its kernel is $\{\infty\}$.

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example \#3: $(x, y) \mapsto\left(\frac{x^{3}-4 x^{2}+30 x-12}{(x-2)^{2}}, \frac{x^{3}-6 x^{2}-14 x+35}{(x-2)^{3}} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves

$$
\left\{y^{2}=x^{3}+x\right\} \longrightarrow\left\{y^{2}=x^{3}-3 x+3\right\}
$$

over \mathbb{F}_{71}. Its kernel is $\{(2,9),(2,-9), \infty\}$.

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

Maths slide 2/5: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map $E \rightarrow E^{\prime}$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of E is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of E is denoted by $\operatorname{End}(E)$.

Each isogeny $\varphi: E \rightarrow E^{\prime}$ has a unique dual isogeny $\widehat{\varphi}: E^{\prime} \rightarrow E$ characterized by $\widehat{\varphi} \circ \varphi=\varphi \circ \widehat{\varphi}=[\operatorname{deg} \varphi]$.

Maths slide 3/5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.

Maths slide 3/5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.

Maths slide 3/5: Isogenies and kernels

For any finite subgroup G of E, there exists a unique ${ }^{1}$ separable isogeny $\varphi_{G}: E \rightarrow E^{\prime}$ with kernel G.
The curve E^{\prime} is denoted by E / G. (cf. quotient groups)
If G is defined over k, then φ_{G} and E / G are also defined over k.
Vélu '71:
Formulas for computing E / G and evaluating φ_{G} at a point.
Complexity: $\Theta(\# G) \rightsquigarrow$ only suitable for small degrees.
Vélu operates in the field where the points in G live.
\rightsquigarrow need to make sure extensions stay small for desired $\# G$
\rightsquigarrow this is why we use supersingular curves!
${ }^{1}$ (up to isomorphism of E^{\prime})

Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism.

Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

- A point $P \in E[m]$ is called an m-torsion point.

Maths slide 4/5: Endomorphisms and torsion points

An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

- A point $P \in E[m]$ is called an m-torsion point.
- The group $G=\langle P\rangle$ generated by an m-torsion point $P \in E[m]$ is the kernel of an m-isogeny written

$$
f: E \rightarrow E / G
$$

Maths slide 5/5: Supersingular isogeny graphs

$E / \overline{\mathbb{F}_{p}}$ is supersingular if it has no points of order p.

Maths slide 5/5: Supersingular isogeny graphs

$E / \overline{\mathbb{F}_{p}}$ is supersingular if it has no points of order p.

Let $S \not \supset p$ denote a set of prime numbers.
For this talk: the supersingular S-isogeny graph consists of:

- vertices given by isomorphism classes of supersingular elliptic curves,
- edges $E-E^{\prime}$ that represent an ℓ-isogeny $E \rightarrow E^{\prime}$ and its dual $E^{\prime} \rightarrow E$, where $\ell \in S$ (up to isomorphism)
both defined over $\overline{\mathbb{F}_{p}}$.

SIDH as an isogeny graph

- Vertices: isomorphism classes of elliptic curves defined over $\overline{\mathbb{F}_{p}}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

SIDH as an isogeny graph

- Vertices: isomorphism classes of elliptic curves defined over $\overline{\mathbb{F}_{p}}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

2 and 3-isogenies of elliptic curves over $\mathbb{F}_{431^{2}}$

Now:
 SIDH

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{ccc}
\text { Alice } & \text { public } & \underline{\text { Bob }} \\
a \stackrel{\text { random }}{\stackrel{\text { random }}{2}\left\{0 \ldots 2^{n}-1\right\}} & b \stackrel{\left.3^{m}-1\right\}}{\stackrel{\text { random }}{ }\left\{0 \ldots 3^{2}\right.}
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{ccc}
\underline{\text { Alice }} & \text { public } & \underline{\text { Bob }} \\
a \stackrel{\text { random }}{\leftarrow}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftarrow}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cr}
\text { Alice } & \text { public }
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\stackrel{1}{2}\left\{0 \ldots 3^{m}-1\right\}} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right)
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

Break it by: given public info, find secret key: φ_{A} (or just A).

Here's some things that don't break it...

Extra points

Aim: given points P_{B}, Q_{B} on E, the image E / A of the secret isogeny $\varphi_{A}: E \rightarrow E / A$, and the images $\varphi_{A}\left(P_{B}\right)$ and $\varphi_{B}\left(Q_{B}\right)$, find φ_{A}.

Fact: with the parameters used in SIDH, the images $\varphi_{A}\left(P_{B}\right)$ and $\varphi_{B}\left(Q_{B}\right)$ uniquely determine the secret isogeny φ_{A}.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map. \rightsquigarrow Rational function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.
\rightsquigarrow Rational function interpolation?
$\because \quad$..the polynomials are of exponential degree $\approx \sqrt{p}$.
\rightsquigarrow can't even write down the result without decomposing into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps. We know enough input-output pairs to determine the map.
\rightsquigarrow Rational function interpolation?
$\because \quad$..the polynomials are of exponential degree $\approx \sqrt{p}$.
\rightsquigarrow can't even write down the result without decomposing into a sequence of smaller-degree maps.
- No known algorithms for interpolating and decomposing at the same time.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.
\because There's an isomorphism of groups

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong\left(\mathbb{Z} / 2^{n}\right)^{2} \times\left(\mathbb{Z} / 3^{m}\right)^{2}
$$

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.
\because There's an isomorphism of groups

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong\left(\mathbb{Z} / 2^{n}\right)^{2} \times\left(\mathbb{Z} / 3^{m}\right)^{2}
$$

\Longrightarrow can't learn anything about 2^{n} from 3^{m} using groups alone. (Annoying: This shows up in many disguises.)

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

\rightsquigarrow We can compute the image of our 3^{m}-torsion points on E_{A} under these endomorphisms.

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

\rightsquigarrow We can compute the image of our 3^{m}-torsion points on E_{A} under these endomorphisms.
- Idea: Find an appropriate endomorphism τ of degree $3^{m} r$; recover 3^{m}-part as above; brute-force the remaining part. \rightsquigarrow image of r-torsion point under φ_{A} \Longrightarrow (details) \Longrightarrow Recover the secret φ_{A}.
\because To get r small enough to be an attack, we have to change the SIDH parameters so that Alice's isogeny has a much higher degree than Bob's.

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\because
${ }^{1}$ Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\because

- Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH. ${ }^{1}$
\because
${ }^{1}$ Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\because

- Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH. ${ }^{1}$
\because
- Life sucks.
${ }^{1}$ Check eprint.iacr.org/2020/633 Section 8 for a generalised approach that has more of a chance...

The pure isogeny problem

Fundamental problem: given supersingular E and $E^{\prime} / \mathbb{F}_{p^{2}}$ that are ℓ^{n}-isogeneous, compute an isogeny $\phi: E \rightarrow E^{\prime}$.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.
- Solution (b): try all three possible order 2 kernels from both E and E^{\prime} and check when the codomain is the same.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.
- Solution (b): try all three possible order 2 kernels from both E and E^{\prime} and check when the codomain is the same.
Solution (b) is meet-in-the-middle: complexity $\tilde{O}\left(p^{1 / 4}\right)$.

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

2,3-isogenies over $\mathbb{F}_{431^{2}}$

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

2,3-isogenies over $\mathbb{F}_{431^{2}}$

2,3-isogenies
over \mathbb{F}_{431}

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$.

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs...

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs... $\tilde{O}\left(p^{1 / 2}\right)$.

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs... $\tilde{O}\left(p^{1 / 2}\right) . \not{\succ}$ (Delfs-Galbraith, Biasse-Jao-Sankar)

More graphs defined over \mathbb{F}_{p}

$$
\begin{gathered}
\text { From 1-dimensional } E / \mathbb{F}_{p^{2}} \\
\text { construct 2-dimensional } W(E) / \mathbb{F}_{p} \\
\text { 'Weil restriction' }
\end{gathered}
$$

This picture is very unlikely to be accurate.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1 / \sqrt{p})$.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1 / \sqrt{p})$. \because

More equivalent categories: lifting to \mathbb{C}

$$
\begin{gathered}
\left\{\begin{array}{c}
\text { Elliptic curves } E \text { defined over } \mathbb{C} \\
\text { with } \operatorname{End}(E)=R
\end{array}\right\} \\
\text { Here computing isogenies is easy! } \\
\left\{\begin{array}{c}
\text { Non-supersingular elliptic curves defined over } \mathbb{F}_{q} \\
\text { with } \operatorname{End}(E)=R
\end{array}\right\}
\end{gathered}
$$

Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.
- If you can find non-scalar endomorphisms, SIDH is probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

Thank you!

