CSIDH: An Efficient Post-Quantum Commutative Group Action https://csidh.isogeny.org

Wouter Castryck¹ Tanja Lange² <u>Chloe Martindale</u>² Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³RU Nijmegen

Cryptography Seminar, Rennes, France, 1st February 2019

History

- 1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
- 1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
- 1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
- 1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
- 1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
- 2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

- 2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
- 2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
- 2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
- 2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
- 2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
- 2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_p (CSIDH)

(History slides mostly stolen from Wouter Castryck)

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 35 ms per operation

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 35 ms per operation
- ► Flexible:
 - ► [DG] uses CSIDH for 'SeaSign' signatures
 - ► [DGOPS] uses CSIDH for oblivious transfer
 - ► [FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group *G* via the map

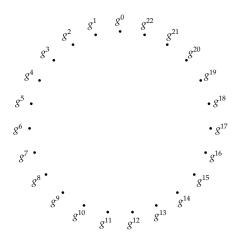
$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

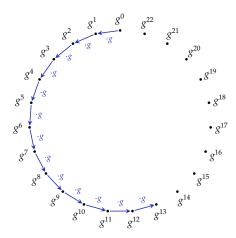
Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

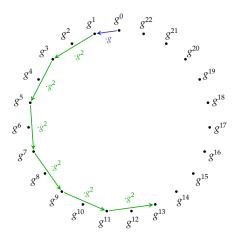
 \rightsquigarrow Idea:

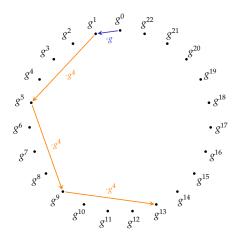
Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

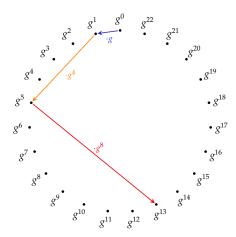
$$H \times S \rightarrow S.$$

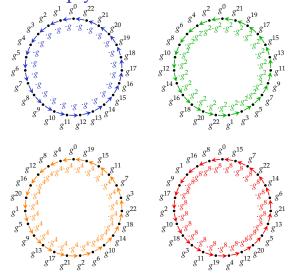


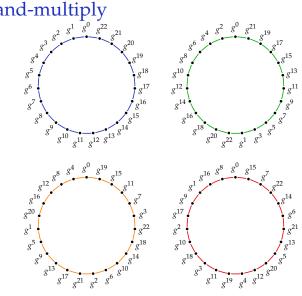


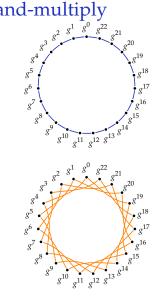


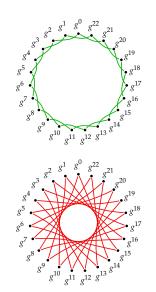






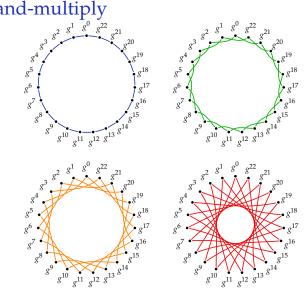






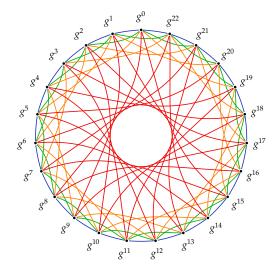
8⁹

 g^{10} g^{11}

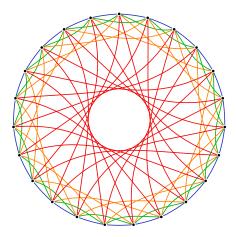


Cycles are compatible: [right, then left] = [left, then right], etc.

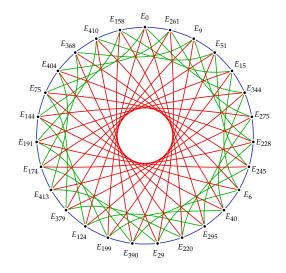
Union of cycles: rapid mixing

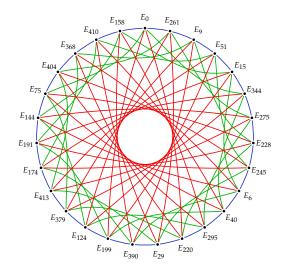


Union of cycles: rapid mixing

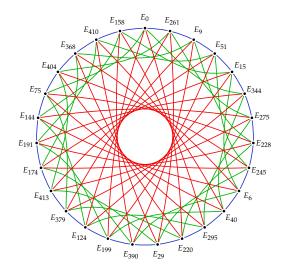


CSIDH: Nodes are now elliptic curves and edges are isogenies.





Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

► If equation *E*_{*A*} is smooth (no self intersections or cusps) it represents an elliptic curve.

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ► If equation *E*_{*A*} is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of F_p-rational solutions (x, y) to an elliptic curve equation E_A/F_p, together with a 'point at infinity' P_∞, forms a group with identity P_∞, notated E_A(F_p).

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ► If equation *E*_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of F_p-rational solutions (x, y) to an elliptic curve equation E_A/F_p, together with a 'point at infinity' P_∞, forms a group with identity P_∞, notated E_A(F_p).
- An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ► If equation *E*_{*A*} is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of F_p-rational solutions (x, y) to an elliptic curve equation E_A/F_p, together with a 'point at infinity' P_∞, forms a group with identity P_∞, notated E_A(F_p).
- An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

Edges: 3-, 5-, and 7-isogenies.

• An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

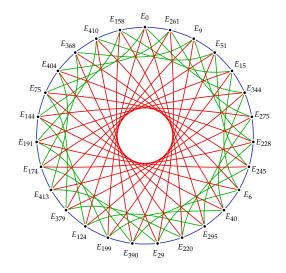
- ► If equation *E*_{*A*} is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of F_p-rational solutions (x, y) to an elliptic curve equation E_A/F_p, together with a 'point at infinity' P_∞, forms a group with identity P_∞, notated E_A(F_p).
- An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

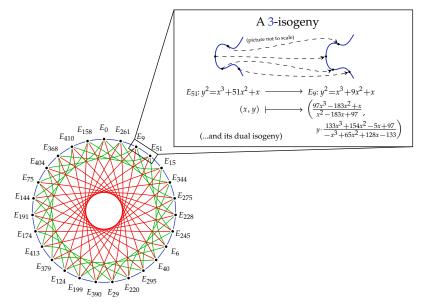
- An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.

Nodes: Supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ► If equation *E*_{*A*} is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of F_p-rational solutions (x, y) to an elliptic curve equation E_A/F_p, together with a 'point at infinity' P_∞, forms a group with identity P_∞, notated E_A(F_p).
- An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

- An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.
- ► Every ℓ -isogeny $f : E_A \to E_B$ has a unique dual ℓ -isogeny $f : E_B \to E_A$. \rightsquigarrow Undirected edges!





Quantumifying Exponentiation

• Recall: we want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

Quantumifying Exponentiation

• Recall: we want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.

Quantumifying Exponentiation

► Recall: we want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- ▶ Replace Z by a commutative group *H*... more details to come!

Quantumifying Exponentiation

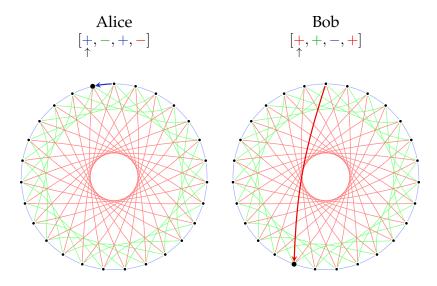
► Recall: we want to replace the exponentiation map

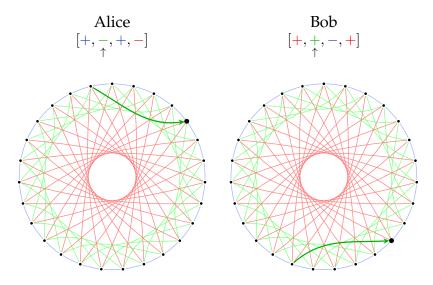
$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

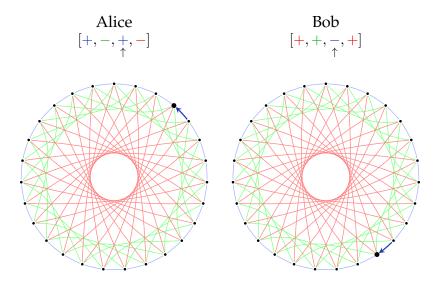
by a group action on a set.

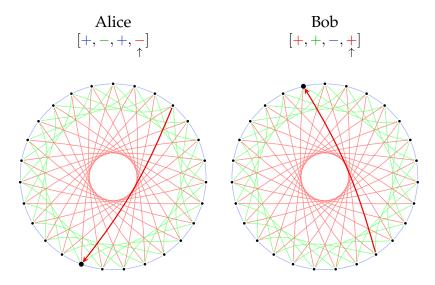
- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- ► Replace Z by a commutative group *H*... more details to come!
- ► The action of a well-chosen *h* (or *h*⁻¹) ∈ *H* on *E_A* ∈ *S* gives an elliptic curve one step from *E_A* around one of the cycles in a + (or −) direction.

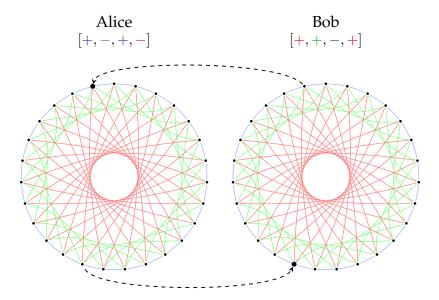


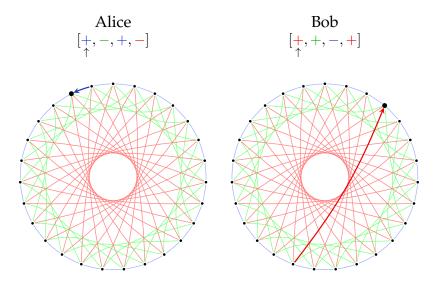


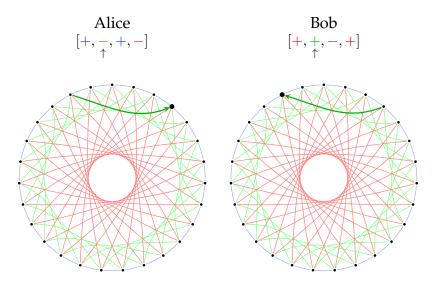


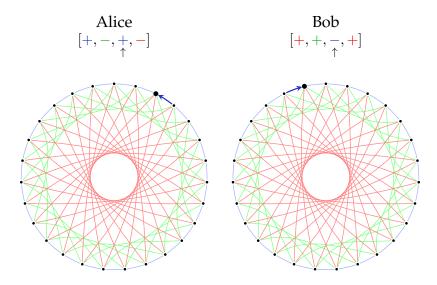


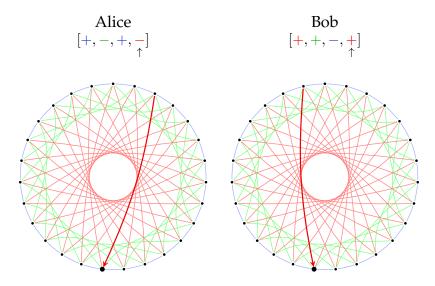


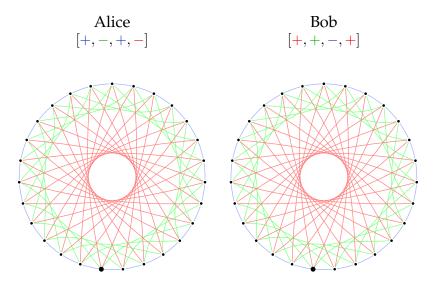












A walkable graph

- ► Nodes: Supersingular elliptic curves E_A: y² = x³ + Ax² + x over F₄₁₉.
- ► Edges: 3-, 5-, and 7-isogenies.

A walkable graph

- ► Nodes: Supersingular elliptic curves E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- ► Edges: 3-, 5-, and 7-isogenies.

Important properties for such a walk:

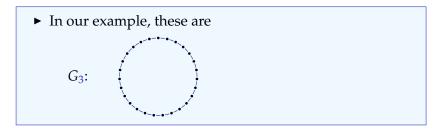
- IP1 ► The graph is a composition of compatible cycles.
- IP2 ► We can compute neighbours in given directions.

Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.

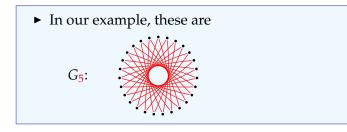
Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.



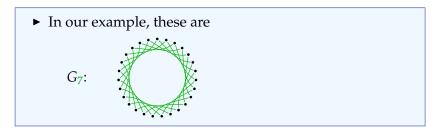
Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.



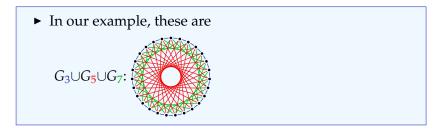
Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.



Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.



Definition

- ► Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- Edges: we draw an edge E E' to represent an ℓ -isogeny $f : E \to E'$ together with its dual ℓ -isogeny.
 - Generally, the G_ℓ look something like

• We want to make sure G_{ℓ} is a cycle.

- We want to make sure G_ℓ is a cycle.
- Equivalently: every node in G_{ℓ} should be distance zero from the cycle.

- We want to make sure G_{ℓ} is a cycle.
- Equivalently: every node in G_{ℓ} should be distance zero from the cycle.
- Two nodes are at different distances from the cycle if and only if they have different endomorphism rings.

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$ (as abelian varieties).

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

• For $n \in \mathbb{Z}$, the mulitplication-by-*n* map

is an endomorphism.

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

▶ For $n \in \mathbb{Z}$, the mulitplication-by-*n* map

is an endomorphism.

► The Frobenius map

$$egin{array}{cccc} \pi : & E &
ightarrow & E \ & (x,y) & \mapsto & (x^p,y^p) \end{array}$$

is an endomorphism.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Example

Let $p \ge 5$, let E/\mathbb{F}_p : $y^2 = x^3 + Ax^2 + x$ be a supersingular elliptic curve, and let π be the Frobenius endomorphism. Then

$$\pi\circ\pi=[-p]$$

and

$$\begin{array}{rcl} \mathbb{Z}[\sqrt{-p}] & \to & \operatorname{End}_{\mathbb{F}_p}(E) \\ n & \mapsto & [n] \\ \sqrt{-p} & \mapsto & \pi \end{array}$$

extends \mathbb{Z} -linearly to a ring homomorphism.

For $p \equiv 3 \pmod{8}$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

► Remember: we want to replace exponentiation Z × G → G with a commutative group action H × S → S.

- ► Remember: we want to replace exponentiation Z × G → G with a commutative group action H × S → S.
- The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.

- ► Remember: we want to replace exponentiation Z × G → G with a commutative group action H × S → S.
- The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ► The group $H = \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.

- ► Remember: we want to replace exponentiation Z × G → G with a commutative group action H × S → S.
- The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \ge 5$.
- ► The group $H = \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.
- What is the action?

• Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.

• Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.

► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E_A(\overline{\mathbb{F}_p})$.

- Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E_A(\overline{\mathbb{F}_p})$.

 Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).

- Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E_A(\overline{\mathbb{F}_p})$.

- Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ► Define

$$f_I: E_A \to E_A/H_I$$

to be the isogeny from E_A with kernel H_I .

- Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E_A(\overline{\mathbb{F}_p})$.

- Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ► Define

$$f_I: E_A \to E_A/H_I$$

to be the isogeny from E_A with kernel H_I .

 For [I] ∈ Cl(ℤ[√−p]), let Ĩ be an integral representative of the ideal class [I]. Then

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S\\ ([I], E_A) & \mapsto & f_{\widetilde{I}}(E_A) \end{array}$$

is a free, transitive group action!

The nodes of graph G_ℓ are the elements of the set S of supersingular elliptic curves E_A/𝔽_p : y² = x³ + Ax² + x with p ≡ 3 (mod 8) and p ≥ 5.

- The nodes of graph G_ℓ are the elements of the set S of supersingular elliptic curves E_A/𝔽_p : y² = x³ + Ax² + x with p ≡ 3 (mod 8) and p ≥ 5.
- ► The map

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S\\ ([I], E_A) & \mapsto & f_{\overline{I}}(E_A) \end{array}$$

is a free, transitive group action.

- The nodes of graph G_ℓ are the elements of the set S of supersingular elliptic curves E_A/𝔽_p : y² = x³ + Ax² + x with p ≡ 3 (mod 8) and p ≥ 5.
- ► The map

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S\\ ([I], E_A) & \mapsto & f_{\tilde{I}}(E_A) \end{array}$$

is a free, transitive group action.

• Edges are l-isogenies $f_{\tilde{l}}$ (together with their duals).

- The nodes of graph G_ℓ are the elements of the set S of supersingular elliptic curves E_A/𝔽_p : y² = x³ + Ax² + x with p ≡ 3 (mod 8) and p ≥ 5.
- ► The map

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S\\ ([I], E_A) & \mapsto & f_{\tilde{I}}(E_A) \end{array}$$

is a free, transitive group action.

• Edges are l-isogenies $f_{\tilde{l}}$ (together with their duals).

 \rightsquigarrow there is a choice of ℓ_1, \ldots, ℓ_n such that $G_{\ell_1} \cup \cdots \cup G_{\ell_n}$ is a composition of compatible cycles (IP1).

IP2: Compute neighbours in given directions.

IP2: Compute neighbours in given directions.

• Our group action was:

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E_A) & \mapsto & f_{\widetilde{I}}(E_A) =: [I] * E_A. \end{array}$$

IP2: Compute neighbours in given directions.

• Our group action was:

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E_A) & \mapsto & f_{\tilde{I}}(E_A) =: [I] * E_A. \end{array}$$

► For $\ell \in {\ell_1, \dots, \ell_n}$ as before and $[I] \in Cl(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{\tilde{I}}(E_A)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

IP2: Compute neighbours in given directions.

• Our group action was:

$$\begin{array}{rcl} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E_A) & \mapsto & f_{\widetilde{I}}(E_A) =: [I] * E_A. \end{array}$$

► For $\ell \in {\ell_1, \dots, \ell_n}$ as before and $[I] \in Cl(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{\tilde{I}}(E_A)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

 Choosing the direction in the graph corresponds to choosing this sign.

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

• Find a point *P* of order ℓ on E_A .

▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas (implemented in Sage).

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

• Find a point *P* of order ℓ on E_A .

▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas (implemented in Sage).

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- Find a point *P* of order ℓ on E_A .
 - ► Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.

▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas (implemented in Sage).

- Find a point *P* of order ℓ on E_A .
 - ► Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E_A(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
- ▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas (implemented in Sage).

- Find a point *P* of order ℓ on E_A .
 - ► Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E_A(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ▶ Compute the isogeny with kernel {P, 2P, ..., ℓP} using Vélu's formulas (implemented in Sage).

- Find a point *P* of order ℓ on E_A .
 - ► Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E_A(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - ► For every odd prime $\ell | (p + 1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ .
- Compute the isogeny with kernel {P, 2P, ..., lP} using Vélu's formulas (implemented in Sage).

- Find a point *P* of order ℓ on E_A .
 - ► Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E_A(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- Compute the isogeny with kernel {P,2P,..., lP} using Vélu's formulas (implemented in Sage).
 - ► Given a F_p-rational point of order ℓ, the isogeny computations can be done over F_p.

To compute the neighbours of supersingular E_A/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell | (p + 1)$:

► Fix conditions as before so that G_ℓ is a cycle, i.e., E_A has two neighbours.

- ► Fix conditions as before so that G_ℓ is a cycle, i.e., E_A has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.

- ► Fix conditions as before so that G_ℓ is a cycle, i.e., E_A has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the action [⟨ℓ, π − 1⟩] * E_A gives an ℓ-isogeny in the '+' direction.

- ► Fix conditions as before so that G_ℓ is a cycle, i.e., E_A has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- 1 ∈ Z/ℓZ is an eigenvalue of Frobenius on the ℓ-torsion; the action [⟨ℓ, π − 1⟩] * E_A gives an ℓ-isogeny in the '+' direction.
- If p ≡ −1 (mod ℓ) then the action [⟨ℓ, π + 1⟩] * E_A gives an ℓ-isogeny in the '−' direction.

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$?

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell | (p + 1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

► Every ℓ_i|(p + 1), so there is a rational basis point of the ℓ_i-torsion

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- Every $\ell_i | (p + 1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ► Every ℓ_i|(p + 1), so there is a rational basis point of the ℓ_i-torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ► $p \equiv -1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- Every $\ell_i | (p + 1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ► $p \equiv -1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

Given the group action as above, Vélu's formulas give actual isogenies!

With our design choices all isogeny computations are over \mathbb{F}_p .¹

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

• Every node of G_{ℓ_i} is

$$E_A \colon y^2 = x^3 + Ax^2 + x.$$

⇒ Can compress every node to a single value $A \in \mathbb{F}_p$. ⇒ Tiny keys!

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

• About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p + 1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p + 1]P = \infty$.²

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

 Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree ℓ₁^{e₁} · · · ℓ_n^{e_n}. She knows the path, so can do only small degree isogeny computations, giving complexity O(∑ e_iℓ_i).

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree ℓ₁^{e₁} · · · ℓ_n^{e_n}. She knows the path, so can do only small degree isogeny computations, giving complexity O(∑ e_iℓ_i). An attacker has to compute one isogeny of large degree.

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree ℓ₁^{e₁} · · · ℓ_n^{e_n}. She knows the path, so can do only small degree isogeny computations, giving complexity O(∑ e_iℓ_i). An attacker has to compute one isogeny of large degree.
- Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from *E*₀ to *E*_A, whereas an attacker has compute all the possible paths from *E*₀.

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree ℓ₁^{e₁} · · · ℓ_n^{e_n}. She knows the path, so can do only small degree isogeny computations, giving complexity O(∑ e_iℓ_i). An attacker has to compute one isogeny of large degree.
- Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from *E*₀ to *E*_A, whereas an attacker has compute all the possible paths from *E*₀.
- ► Best classical attacks are (variants of) meet-in-the-middle: Time $O(\sqrt[4]{p})$.

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

 Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS – their attack also applies to CSIDH.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS – their attack also applies to CSIDH.
- ► Part of CJS attack computes many paths in superposition.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

(and much more).

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies

(and much more).

- Most previous analysis focussed on asymptotics
- ▶ [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle – it depends on:
 - Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies (and much more).

Most previous analysis focussed on asymptotics

- [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using 765325228976 ≈ 0.7 · 2⁴⁰ nonlinear bit operations.
- For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2⁸¹ qubit operations.³

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Parameters

CSIDH-log p	intended NIST level	public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security	
CSIDH-512	1	64 b	32 b	70 ms	212e6	4368 b	128	
CSIDH-1024	3	128 b	64 b				256	
CSIDH-1792	5	224 b	112 b				448	

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

	CSIDH	SIDH	
Speed (NIST 1)	70ms (can be improved)	$\approx 10 \text{ms}^4$	
Public key size (NIST 1)	64B	378B	
Key compression (speed)		$\approx 15 \mathrm{ms}$	
Key compression (size)		222B	
Constant-time slowdown	$\approx \times$ 3 (can be improved)	$\approx \times 1$	
Submitted to NIST	no	yes	
Maturity	9 months	8 years	
Best classical attack	$p^{1/4}$	$p^{1/4}$	
Best quantum attack	$L_{p}[1/2]$	$p^{1/6}$	
Key size scales	quadratically	linearly	
Security assumption	isogeny walk problem	ad hoc	
Non-interactive key exchange	yes	unbearably slow	
Signatures (classical)	unbearably slow	seconds	
Signatures (quantum)	seconds	still seconds?	

⁴This is a very conservative estimate!

 Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).

- Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- ► Hardware implementation.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- ► Hardware implementation.
- ► More applications.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- Hardware implementation.
- ► More applications.
- ► [Your paper here!]

Thank you!

WHEN T

References

Mentioned in this talk:

- BLMP Bernstein, Lange, Martindale, and Panny: *Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies* https://quantum.isogeny.org
 - BS Bonnetain, Schrottenloher: Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes https://ia.cr/2018/537
- CLMPR Castryck, Lange, Martindale, Panny, Renes: *CSIDH: An Efficient Post-Quantum Commutative Group Action* https://ia.cr/2018/383
 - CJS Childs, Jao, and Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019

DG De Feo, Galbraith: SeaSign: Compact isogeny signatures from class group actions https://ia.cr/2018/824

DKS De Feo, Kieffer, Smith: Towards practical key exchange from ordinary isogeny graphs https://ia.cr/2018/485

References

Mentioned in this talk (contd.):

- DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart: Secure Oblivious Transfer from Semi-Commutative Masking https://ia.cr/2018/648
 - FTY Fujioka, Takashima, and Yoneyama: *One-Round Authenticated Group Key Exchange from Isogenies* https://eprint.iacr.org/2018/1033
- MCR Meyer, Campos, Reith: On Lions and Elligators: An efficient constant-time implementation of CSIDH https://eprint.iacr.org/2018/1198
- Kup1 Kuperberg:

A subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/quant-ph/0302112

Kup2 Kuperberg:

Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/1112.3333

Reg Regev:

A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space

https://arxiv.org/abs/quant-ph/0406151

References

Further reading:

- BIJ Biasse, Iezzi, Jacobson: A note on the security of CSIDH https://arxiv.org/pdf/1806.03656
- DPV Decru, Panny, and Vercauteren: Faster SeaSign signatures through improved rejection sampling https://eprint.iacr.org/2018/1109
- JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez: A polynomial quantum space attack on CRS and CSIDH (MathCrypt 2018)
- MR Meyer, Reith: A faster way to the CSIDH https://ia.cr/2018/782

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful tikz pictures.