CSIDH:

An Efficient Post-Quantum Commutative Group Action

https://csidh.isogeny.org

Wouter Castryck¹ Tanja Lange² <u>Chloe Martindale</u>² Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³RU Nijmegen

Oxford PQC Workshop, 22nd March 2019

History

- 1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
- 1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
- 1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
- 1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
- 1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
- 2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

- 2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
- 2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
- 2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
- 2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
- 2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
- 2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_p (CSIDH)

(History slides mostly stolen from Wouter Castryck)

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: $\sim 25 32.5$ ms per operation

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: $\sim 25 32.5$ ms per operation
- ► Flexible:
 - ► [DG] uses CSIDH for 'SeaSign' signatures
 - ► [DGOPS] uses CSIDH for oblivious transfer
 - ► [FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

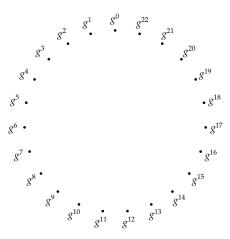
$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

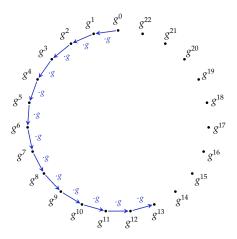
Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

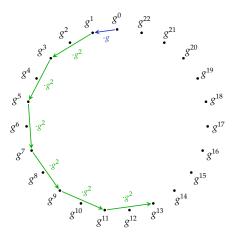
→ Idea:

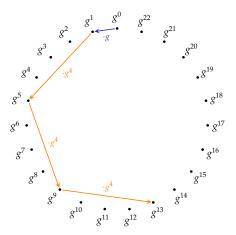
Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

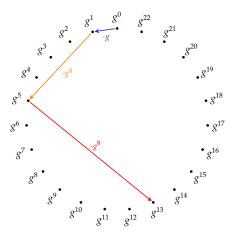
$$H \times S \rightarrow S$$
.

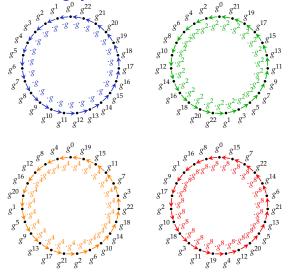


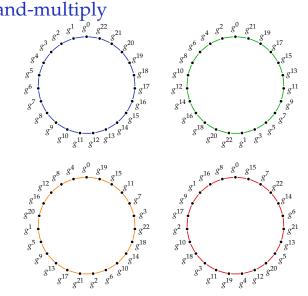


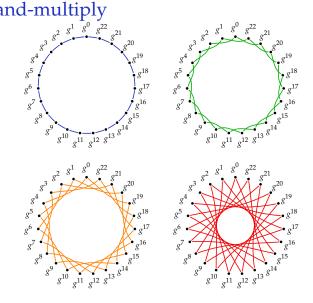


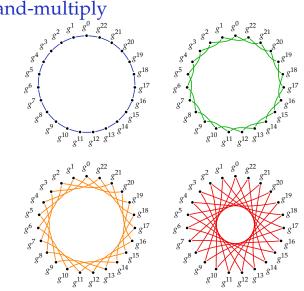






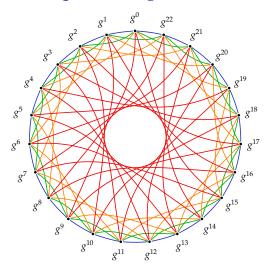




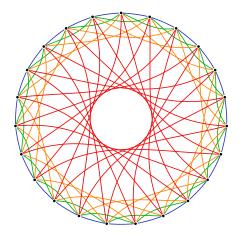


Cycles are compatible: [right, then left] = [left, then right], etc.

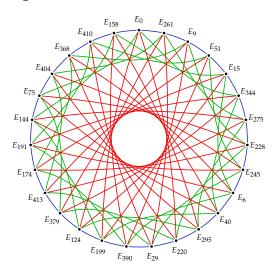
Union of cycles: rapid mixing

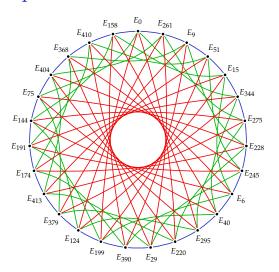


Union of cycles: rapid mixing

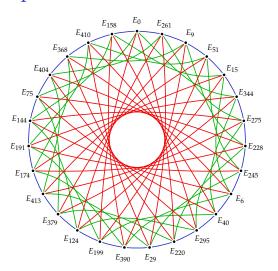


CSIDH: Nodes are now elliptic curves and edges are isogenies.





Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.
- ► An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.
- ► An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

Edges: 3-, 5-, and 7-isogenies.

▶ An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

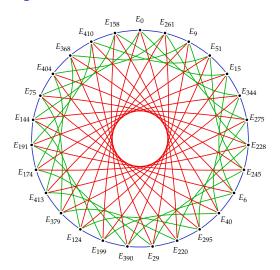
- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.
- ► An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

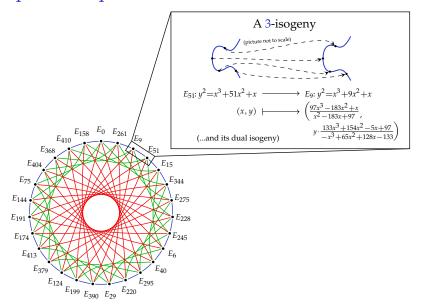
- ▶ An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.
- ▶ An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.

- ▶ An isogeny $E_A \rightarrow E_B$ is a non-zero morphism ('nice map') that preserves P_{∞} .
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.
- ► Every ℓ -isogeny $f: E_A \to E_B$ has a unique dual ℓ -isogeny $f: E_B \to E_A$. \leadsto Undirected edges!





Quantumifying Exponentiation

▶ Recall: we want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

Quantumifying Exponentiation

► Recall: we want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

▶ Replace *G* by the set *S* of supersingular elliptic curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Quantumifying Exponentiation

► Recall: we want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace *G* by the set *S* of supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Replace \mathbb{Z} by a commutative group (H, *)... more details to come!

Quantumifying Exponentiation

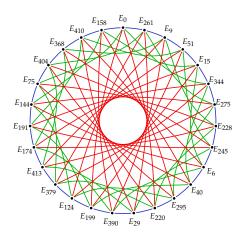
► Recall: we want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

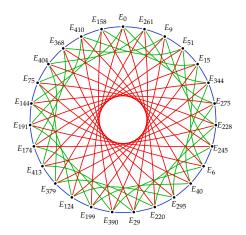
by a group action on a set.

- ▶ Replace *G* by the set *S* of supersingular elliptic curves $E_A : y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Replace \mathbb{Z} by a commutative group (H, *)... more details to come!
- ▶ The action of a well-chosen h (or h^{-1}) ∈ H on E_A ∈ S, written $h \cdot E_A$ (or $h^{-1} \cdot E_A$) gives an elliptic curve one step from E_A around one of the cycles in a + (or −) direction.

Graphs of elliptic curves

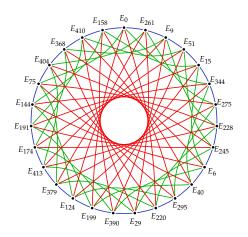


Graphs of elliptic curves

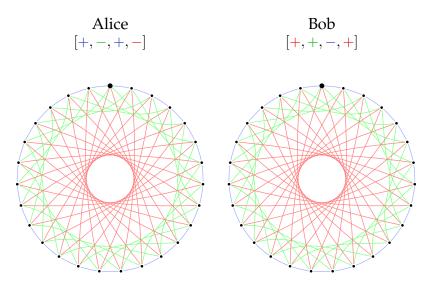


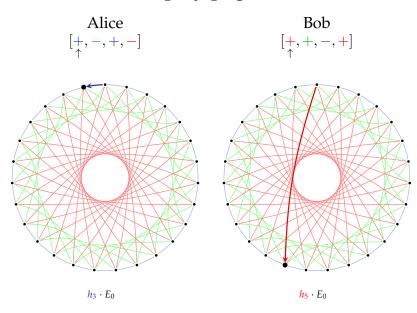
Nodes: Set *S* of supersingular E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

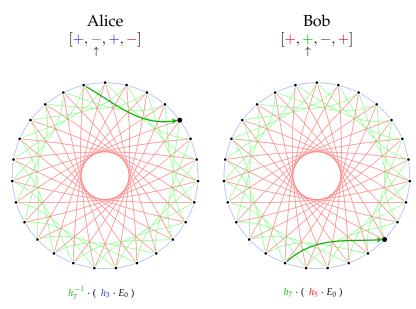
Graphs of elliptic curves

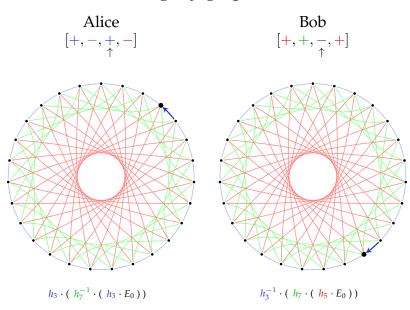


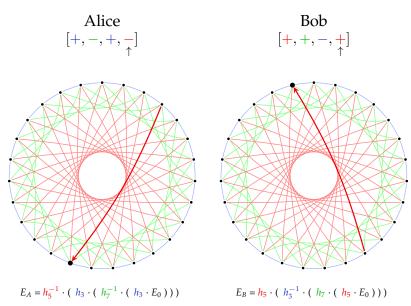
Nodes: Set *S* of supersingular E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies, given (in clockwise direction) by action of h_3 , h_5 , $h_7 \in H$.

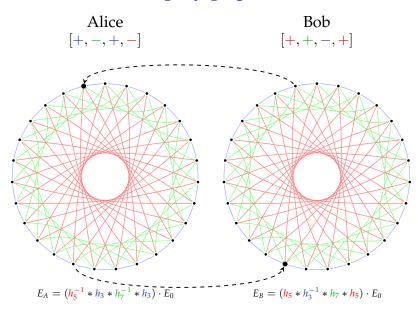


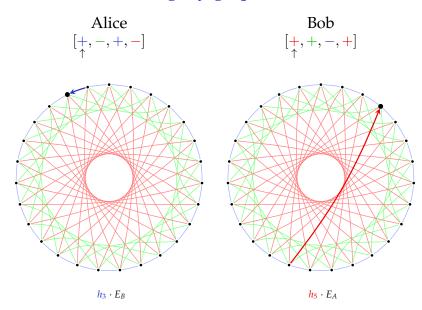


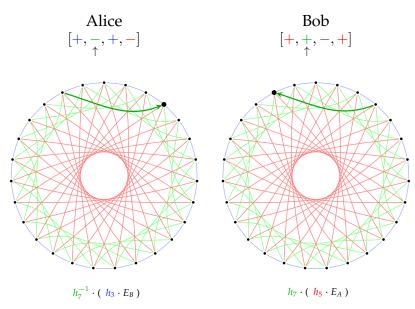


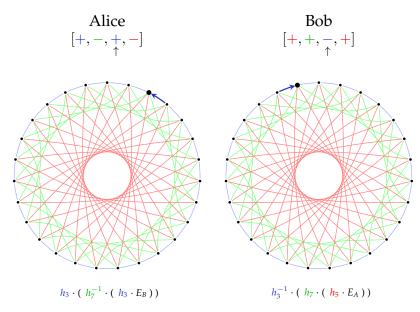


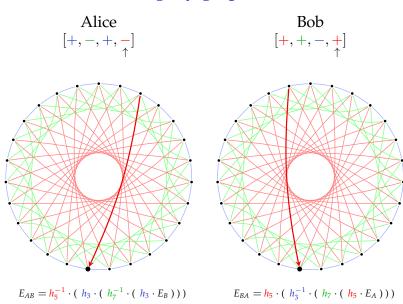


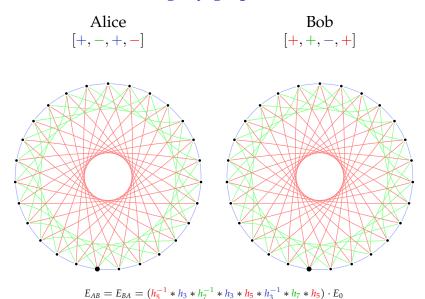












A walkable graph

- ▶ Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ► Edges: 3-, 5-, and 7-isogenies.

A walkable graph

- ▶ Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ► Edges: 3-, 5-, and 7-isogenies.

Important properties for such a walk:

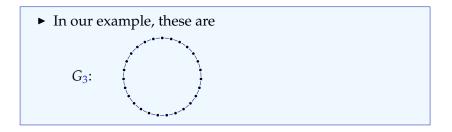
- IP1 ► The graph is a composition of compatible cycles.
- IP2 ► We can compute neighbours in given directions.

Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

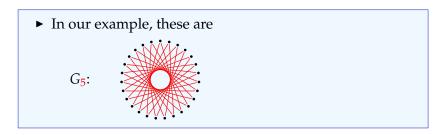
Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.



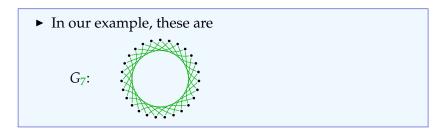
Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.



Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.



Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

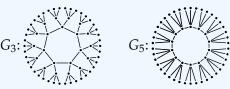
In our example, these are $G_3 \cup G_5 \cup G_7$:

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p (up to \mathbb{F}_p -isomorphism) with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$.
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

▶ Generally, the G_ℓ look something like



▶ We want to make sure G_{ℓ} is a disjoint union of cycles.

- ▶ We want to make sure G_{ℓ} is a disjoint union of cycles.
- ▶ Equivalently: every node in G_{ℓ} should be distance zero from a cycle.

- ▶ We want to make sure G_{ℓ} is a disjoint union of cycles.
- ▶ Equivalently: every node in G_{ℓ} should be distance zero from a cycle.
- ► If two nodes have the same endomorphism ring then they are at same distance from a cycle.

Definition

An endomorphism of an elliptic curve E is a morphism $E \to E$ (as abelian varieties).

Definition

An endomorphism of an elliptic curve E is a morphism $E \to E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

▶ For $n \in \mathbb{Z}$, the mulitplication-by-n map

$$[n]: E \rightarrow E$$

$$P \mapsto nP$$

is an endomorphism.

Definition

An endomorphism of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

▶ For $n \in \mathbb{Z}$, the mulitplication-by-n map

$$\begin{array}{ccc} [n]: & E & \to & E \\ & P & \mapsto & nP \end{array}$$

is an endomorphism.

► The Frobenius map

$$\pi: E \to E$$
$$(x,y) \mapsto (x^p, y^p)$$

is an endomorphism.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Example

Let $p \ge 5$, let $E/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ be a supersingular elliptic curve, and let π be the Frobenius endomorphism. Then

$$\pi \circ \pi = [-p]$$

and

$$\begin{array}{ccc}
\mathbb{Z}[\sqrt{-p}] & \to & \operatorname{End}_{\mathbb{F}_p}(E) \\
n & \mapsto & [n] \\
\sqrt{-p} & \mapsto & \pi
\end{array}$$

extends \mathbb{Z} -linearly to a ring homomorphism.

Towards IP1: A composition of cycles

For $p \equiv 3 \pmod 8$ and $p \ge 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

Towards IP1: A composition of cycles

For $p \equiv 3 \pmod 8$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

Recall:

- ▶ We want to make sure the isogeny graph G_{ℓ} is a disjoint union of cycles.
- ► Equivalently: every node in G_{ℓ} should be distance zero from a cycle.
- ► If two nodes have the same endomorphism ring then they are at same distance from a cycle.

Towards IP1: A composition of cycles

For $p \equiv 3 \pmod 8$ and $p \ge 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

Recall:

- ▶ We want to make sure the isogeny graph G_{ℓ} is a disjoint union of cycles.
- ► Equivalently: every node in G_{ℓ} should be distance zero from a cycle.
- ► If two nodes have the same endomorphism ring then they are at same distance from a cycle.

 \leadsto take G_{ℓ} to be the isogeny graph containing supersingular E_A/\mathbb{F}_p with $p \equiv 3 \pmod 8$.

IP1: A composition of compatible cycles

▶ Remember: we wanted to replace exponentiation $\mathbb{Z} \times G \to G$ with a commutative group action $H \times S \to S$. \leadsto cycles are compatible.

IP1: A composition of compatible cycles

- Remember: we wanted to replace exponentiation
 Z × G → G with a commutative group action H × S → S.
 ∴ cycles are compatible.
- ► The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.

IP1: A composition of compatible cycles

- Remember: we wanted to replace exponentiation
 Z × G → G with a commutative group action H × S → S.
 ∴ cycles are compatible.
- ► The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ► The group $H = \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

▶ Find a point *P* of order ℓ on E_A .

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

▶ Find a point *P* of order ℓ on E_A .

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $Q = E_A(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $Q = E_A(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $P = \frac{p+1}{\ell}Q$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $Q = E_A(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $P = \frac{p+1}{\ell}Q$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, ..., \ell P\}$ using Vélu's formulas (implemented in Sage).

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $Q = E_A(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $P = \frac{p+1}{\ell}Q$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
 - ▶ Given a \mathbb{F}_p -rational point of order ℓ , the isogeny computations can be done over \mathbb{F}_p .

To compute a neighbour of E_A , we have to compute an ℓ -isogeny from E_A . To do this:

- ▶ Find a point *P* of order ℓ on E_A .
 - ▶ Let E_A/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E_A(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $Q = E_A(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $P = \frac{p+1}{\ell}Q$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
 - ▶ Given a \mathbb{F}_p -rational point of order ℓ , the isogeny computations can be done over \mathbb{F}_p .

(The direction can be easily computed as well, but that requires a bit more background).

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$?

 $^{^1}$ You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p=4\ell_1\cdots\ell_n-1$ ensures:

▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion

 $^{^1}$ You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p=4\ell_1\cdots\ell_n-1$ ensures:

- ▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E_A/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p=4\ell_1\cdots\ell_n-1$ ensures:

- ▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action) With our design choices all isogeny computations are over \mathbb{F}_p . ¹

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

- \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
- \Rightarrow Tiny keys!

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- ▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p+1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p+1]P = \infty$.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .
- ▶ Best classical attacks are (variants of) meet-in-the-middle: Time $O(\sqrt[4]{p})$.

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

► Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

- ► Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

- ► Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ► Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS their attack also applies to CSIDH.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ► Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS their attack also applies to CSIDH.
- ▶ Part of CJS attack computes many paths in superposition.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

- Most previous analysis focussed on asymptotics
- ▶ [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

- Most previous analysis focussed on asymptotics
- ▶ [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ► For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2⁸¹ qubit operations.³

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Parameters

CSIDH-log p	intended NIST level	public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security	
CSIDH-512	1	64 b	32 b	65 ms	212e6	4368 b	128	
CSIDH-1024	3	128 b	64 b				256	
CSIDH-1792	5	224 b	112 b				448	

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

	CSIDH	SIDH
Speed (NIST 1)	65ms (can be improved)	$\approx 10 \text{ms}^4$
Public key size (NIST 1)	64B	378B
Key compression (speed)		≈ 15ms
Key compression (size)		222B
Constant-time slowdown	$\approx \times$ 3 (can be improved)	$\approx \times 1$
Submitted to NIST	no	yes
Maturity	10 months	8 years
Best classical attack	$p^{1/4}$	$p^{1/4}$
Best quantum attack	$L_p[1/2]$	$p^{1/4}$
Key size scales	quadratically	linearly
Security assumption	isogeny walk problem	ad hoc
Non-interactive key exchange	yes	unbearably slow
Signatures (classical)	unbearably slow	seconds
Signatures (quantum)	seconds	still seconds?

⁴This is a very conservative estimate!

► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- ► Hardware implementation.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- ► Hardware implementation.
- ► More applications.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [BLMP], [MCR]).
- ► Hardware implementation.
- ► More applications.
- ► [Your paper here!]

References

Mentioned in t	nus	tai	K
----------------	-----	-----	---

- BLMP Bernstein, Lange, Martindale, and Panny:

 Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies

 https://quantum.isogenv.org
 - BS Bonnetain, Schrottenloher: *Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes*https://ia.cr/2018/537
- CLMPR Castryck, Lange, Martindale, Panny, Renes: CSIDH: An Efficient Post-Quantum Commutative Group Action https://ia.cr/2018/383
 - CJS Childs, Jao, and Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
 - DG De Feo, Galbraith:

 SeaSign: Compact isogeny signatures from class group actions

 https://ia.cr/2018/824
 - DKS De Feo, Kieffer, Smith:

 Towards practical key exchange from ordinary isogeny graphs

 https://ia.cr/2018/485

References

Mentioned in this	talk (contd.):
-------------------	--------	--------	----

- DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart: Secure Oblivious Transfer from Semi-Commutative Masking https://ia.cr/2018/648
 - FTY Fujioka, Takashima, and Yoneyama:

 One-Round Authenticated Group Key Exchange from Isogenies

 https://eprint.iacr.org/2018/1033
- MCR Meyer, Campos, Reith:
 On Lions and Elligators: An efficient constant-time implementation of CSIDH https://eprint.iacr.org/2018/1198
- Kup1 Kuperberg: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/quant-ph/0302112
- Kup2 Kuperberg: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/1112.3333
 - Reg Regev:
 A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space
 https://arxiv.org/abs/quant-ph/0406151

References

Further reading:

BIJ Biasse, Iezzi, Jacobson:

A note on the security of CSIDH

https://arxiv.org/pdf/1806.03656

DPV Decru, Panny, and Vercauteren:

Faster SeaSign signatures through improved rejection sampling https://eprint.iacr.org/2018/1109

The first of the f

JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:

A polynomial quantum space attack on CRS and CSIDH

(MathCrypt 2018)

MR Meyer, Reith:

A faster way to the CSIDH

https://ia.cr/2018/782

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful tikz pictures.