CSIDH:

An Efficient Post-Quantum Commutative Group Action

https://csidh.isogeny.org

Wouter Castryck¹ Tanja Lange² <u>Chloe Martindale</u>² Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³RU Nijmegen

SRM, Luxembourg, 7th May 2019

History

- 1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
- 1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
- 1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
- 1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
- 1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
- 2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

- 2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
- 2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
- 2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
- 2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
- 2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
- 2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_p (CSIDH)

(History slides mostly stolen from Wouter Castryck)

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 35 ms per operation

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 35 ms per operation
- ► Flexible:
 - ► [DG] uses CSIDH for 'SeaSign' signatures
 - ► [DGOPS] uses CSIDH for oblivious transfer
 - ► [FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

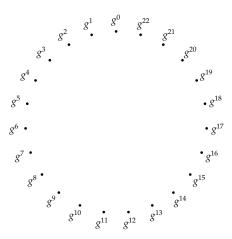
$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

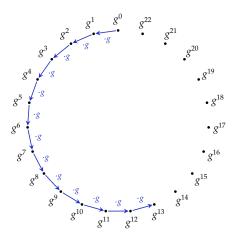
Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

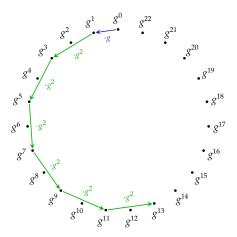
→ Idea:

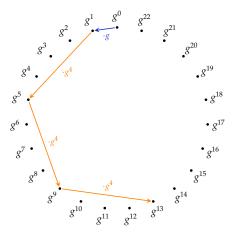
Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

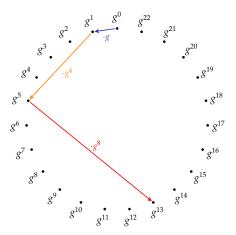
$$H \times S \rightarrow S$$
.

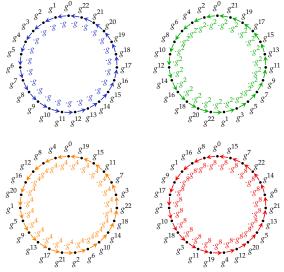


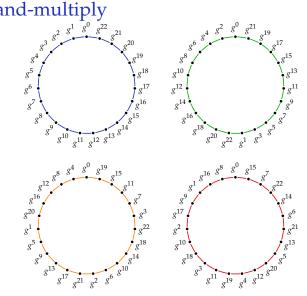


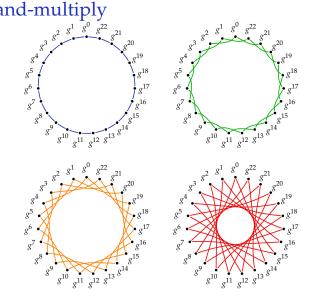


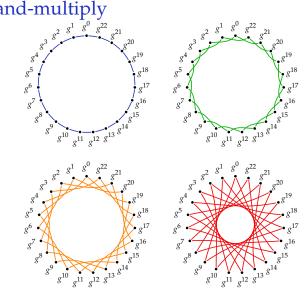






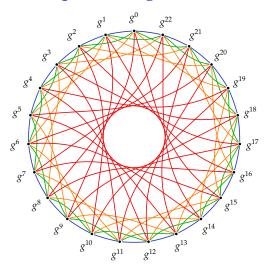




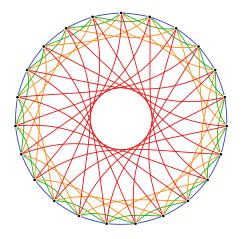


Cycles are compatible: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing

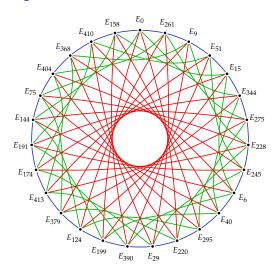


Union of cycles: rapid mixing

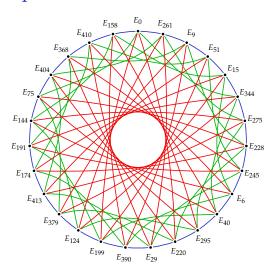


CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

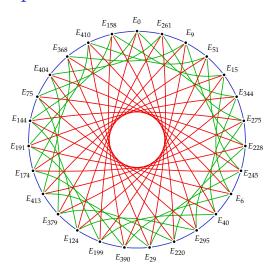


Graphs of elliptic curves



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Graphs of elliptic curves

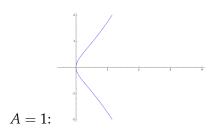


Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

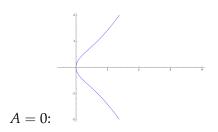
Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

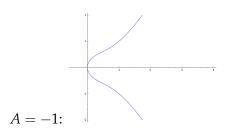
Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



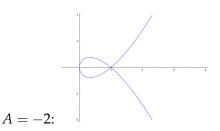
Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



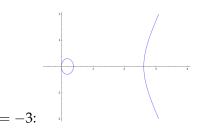
Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

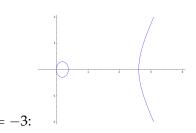


Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .



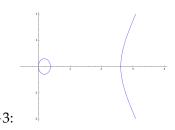
Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.



Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

- ▶ If equation E_A is smooth (no self intersections or cusps) it represents an elliptic curve.
- ► The set of \mathbb{F}_p -rational solutions (x, y) to an elliptic curve equation E_A/\mathbb{F}_p , together with a 'point at infinity' P_{∞} , forms a group with identity P_{∞} , notated $E_A(\mathbb{F}_p)$.
- ► An elliptic curve E_A/\mathbb{F}_p with $p \ge 5$ such that $\#E_A(\mathbb{F}_p) = p + 1$ is supersingular.



Edges: 3-, 5-, and 7-isogenies.

▶ An isogeny is a type of structure preserving map $E_A \rightarrow E_B$.

Interlude: supersingular elliptic curves and isogenies

Edges: 3-, 5-, and 7-isogenies.

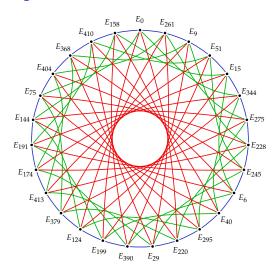
- ▶ An isogeny is a type of structure preserving map $E_A \rightarrow E_B$.
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.

Interlude: supersingular elliptic curves and isogenies

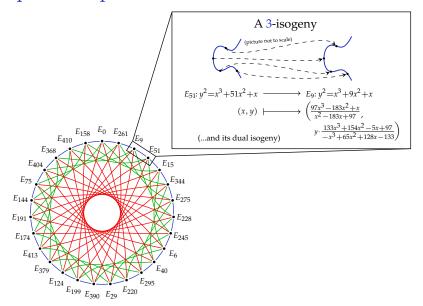
Edges: 3-, 5-, and 7-isogenies.

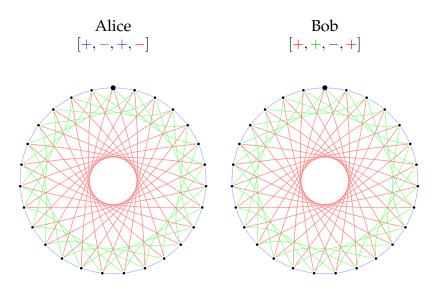
- ▶ An isogeny is a type of structure preserving map $E_A \rightarrow E_B$.
- ► For $\ell \neq p$ (= 419 here), an ℓ -isogeny $f : E_A \to E_B$ is an isogeny with $\# \ker(f) = \ell$.
- ▶ Every ℓ -isogeny $f: E_A \to E_B$ has a unique dual ℓ -isogeny $f: E_B \to E_A$.

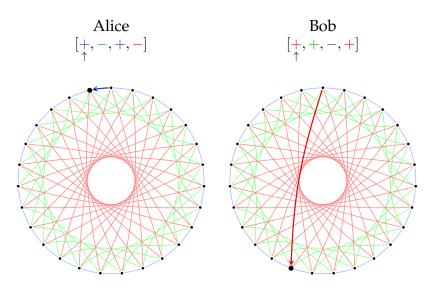
Graphs of elliptic curves

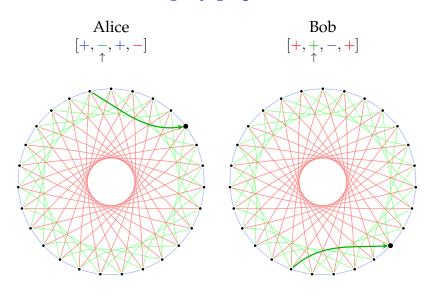


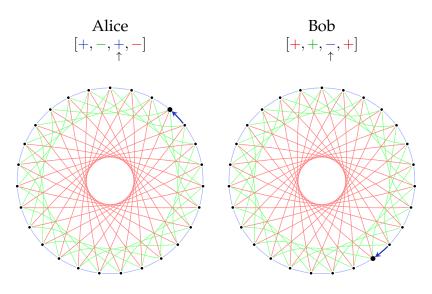
Graphs of elliptic curves

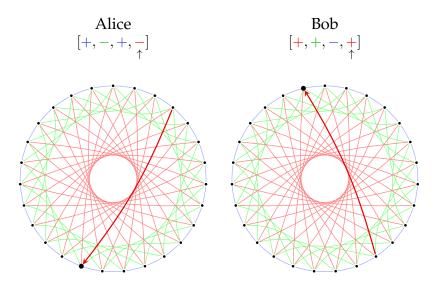


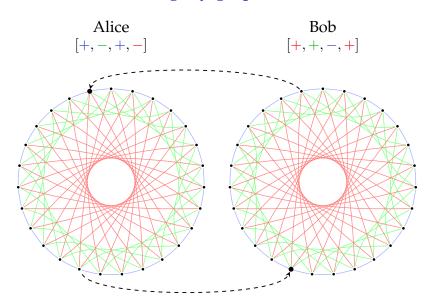


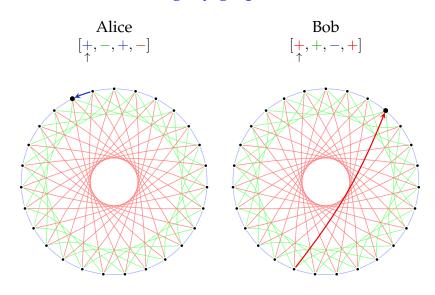


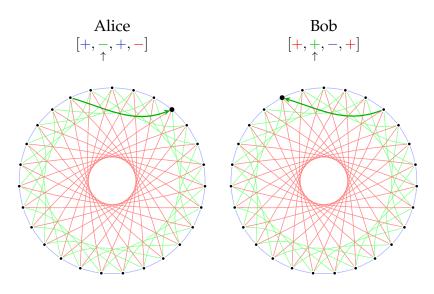


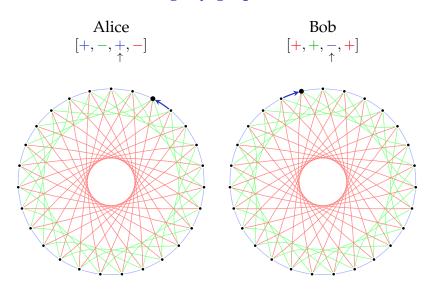


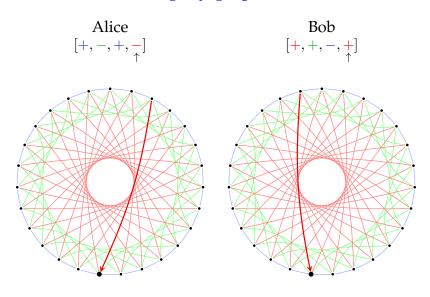


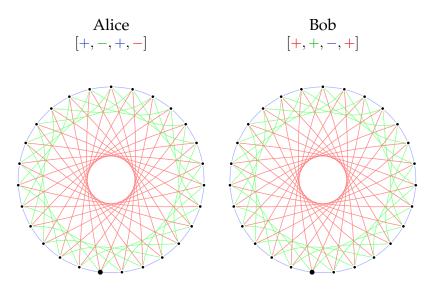








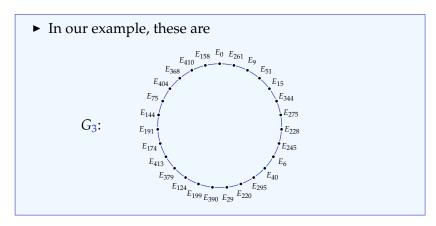


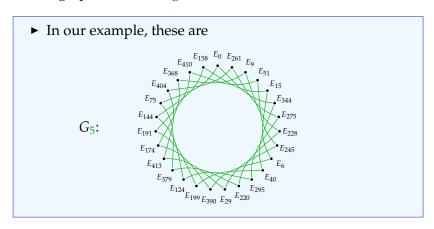


A walkable graph

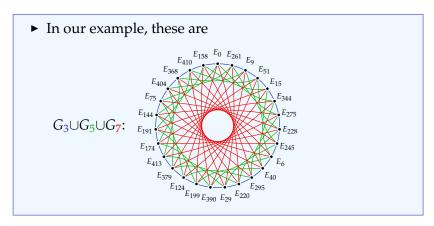
Important properties for our graph:

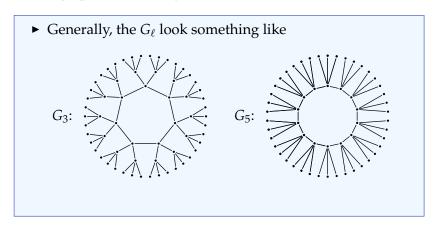
- IP1 ► The graph is a composition of compatible cycles.
- IP2 ► We can compute neighbours in given directions.

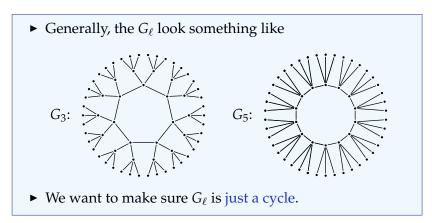




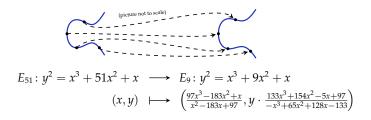




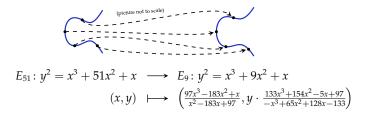




The edges of G_{ℓ} are ℓ -isogenies.

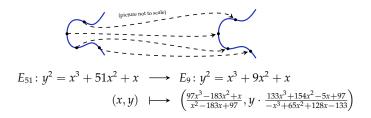


The edges of G_ℓ are ℓ -isogenies.



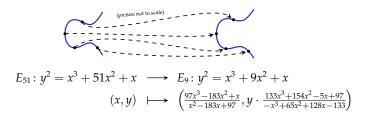
▶ The orientation of G_{ℓ} is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).

The edges of G_ℓ are ℓ -isogenies.



- ▶ The orientation of G_{ℓ} is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).
- ▶ The cost grows with $\ell \rightsquigarrow$ want small ℓ .

The edges of G_ℓ are ℓ -isogenies.



- ▶ The orientation of G_{ℓ} is mathematically well-defined (canonical way to compute the 'left' or 'right' isogeny).
- ▶ The cost grows with $\ell \rightsquigarrow$ want small ℓ .
- ► Generally needs big extension fields...

1. ightharpoonup Choose some small odd primes ℓ_1, \ldots, ℓ_n .

- 1. \blacktriangleright Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- 1. \blacktriangleright Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .

- 1. \blacktriangleright Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - ► Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .
- **?** ► E_0 is supersingular \leadsto has p+1 points.

- 1. ightharpoonup Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - ► Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .
- \sum E₀ is supersingular \rightarrow has p + 1 points.
 - ▶ Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.

- 1. ightharpoonup Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - ► Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .
- \sum E₀ is supersingular \rightarrow has p + 1 points.
 - ▶ Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - ▶ Then every G_{ℓ_i} is a disjoint union of cycles.

- 1. ightharpoonup Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - ► Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .
- γ ► E_0 is supersingular \rightsquigarrow has p+1 points.
 - ▶ Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - ▶ Then every G_{ℓ_i} is a disjoint union of cycles.
 - ► All G_{ℓ_i} are compatible.

- 1. ightharpoonup Choose some small odd primes ℓ_1, \ldots, ℓ_n .
 - ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
 - ► Fix the curve E_0 : $y^2 = x^3 + x$ over \mathbb{F}_p .
- γ ► E_0 is supersingular \rightsquigarrow has p+1 points.
 - ▶ Let the nodes of G_{ℓ_i} be those E_A with p + 1 points.
 - ▶ Then every G_{ℓ_i} is a disjoint union of cycles.
 - ▶ All G_{ℓ_i} are compatible.
 - ► Computations need only \mathbb{F}_p -arithmetic (because $\ell_i | (p+1)$).

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

- \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
- \Rightarrow Tiny keys!

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- ▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p+1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p+1]P = \infty$.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree.
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .
- ▶ Best classical attacks are (variants of) meet-in-the-middle: Time $O(\sqrt[4]{p})$.

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

► Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ► Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS their attack also applies to CSIDH.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ► Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS their attack also applies to CSIDH.
- ▶ Part of CJS attack computes many paths in superposition.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

²From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

²From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

- Most previous analysis focussed on asymptotics
- ▶ [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

²From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

- Most previous analysis focussed on asymptotics
- ▶ [BLMP] gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ► For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2⁸¹ qubit operations.²

²From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

Parameters

CSIDH-log p	intended NIST level	public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security	
CSIDH-512	1	64 b	32 b	65 ms	212e6	4368 b	128	
CSIDH-1024	3	128 b	64 b				256	
CSIDH-1792	5	224 b	112 b				448	

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

	CSIDH	SIDH	
Speed (NIST 1)	65ms (can be improved)	$\approx 10 \text{ms}^3$	
Public key size (NIST 1)	64B	378B	
Key compression (speed)		$\approx 15 \mathrm{ms}$	
Key compression (size)		222B	
Constant-time slowdown	pprox imes 2.2 (can be improved)	$\approx \times 1$	
Submitted to NIST	no	yes	
Maturity	1 year	8 years	
Best classical attack	$p^{1/4}$	$p^{1/4}$	
Best quantum attack	$L_p[1/2]$	$p^{1/6}$	
Key size scales	quadratically	linearly	
Security assumption	isogeny walk problem	ad hoc	
Non-interactive key exchange	yes	unbearably slow	
Signatures (classical)	unbearably slow ⁴	seconds	
Signatures (quantum)	seconds	still seconds?	

³This is a very conservative estimate!

Word on the street: soon to be milliseconds!

► Fast and constant-time implementation. (For ideas on constant-time optimization, see [MCR] and [OAYT]).

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [MCR] and [OAYT]).
- ► Hardware implementation.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [MCR] and [OAYT]).
- ► Hardware implementation.
- ► More applications.

- ► Fast and constant-time implementation. (For ideas on constant-time optimization, see [MCR] and [OAYT]).
- ► Hardware implementation.
- ► More applications.
- ► [Your paper here!]

References

Mentioned in	tnis	tai	K
--------------	------	-----	---

- BLMP Bernstein, Lange, Martindale, and Panny:

 Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies

 https://quantum.isogenv.org
 - BS Bonnetain, Schrottenloher: *Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes*https://ia.cr/2018/537
- CLMPR Castryck, Lange, Martindale, Panny, Renes: CSIDH: An Efficient Post-Quantum Commutative Group Action https://ia.cr/2018/383
 - CJS Childs, Jao, and Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
 - DG De Feo, Galbraith:

 SeaSign: Compact isogeny signatures from class group actions

 https://ia.cr/2018/824
 - DKS De Feo, Kieffer, Smith:

 Towards practical key exchange from ordinary isogeny graphs

 https://ia.cr/2018/485

References

DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:

Secure Oblivious Transfer from Semi-Commutative Masking

https://ia.cr/2018/648

FTY Fujioka, Takashima, and Yoneyama:

One-Round Authenticated Group Key Exchange from Isogenies

https://eprint.iacr.org/2018/1033

MCR Meyer, Campos, Reith:

On Lions and Elligators: An efficient constant-time implementation of CSIDH https://eprint.iacr.org/2018/1198

Kup1 Kuperberg: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/quant-ph/0302112

Kup2 Kuperberg: Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/1112.3333

OAYT Onuki, Aikawa, Yamazaki, and Takagi:

A Faster Constant-time Algorithm of CSIDH keeping Two Torsion Points

https://eprint.iacr.org/2019/353.pdf

Reg Regev:

A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space

https://arxiv.org/abs/quant-ph/0406151

References

Further reading:

BIJ Biasse, Iezzi, Jacobson:

A note on the security of CSIDH

https://arxiv.org/pdf/1806.03656

DPV Decru, Panny, and Vercauteren:

Faster SeaSign signatures through improved rejection sampling https://eprint.iacr.org/2018/1109

The first of the f

JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:

A polynomial quantum space attack on CRS and CSIDH

(MathCrypt 2018)

MR Meyer, Reith:

A faster way to the CSIDH

https://ia.cr/2018/782

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful tikz pictures.