Non-interactive post-quantum key-exchange from isogeny graphs of elliptic curves

```
Wouter Castryck<sup>1</sup> Tanja Lange<sup>2</sup> <u>Chloe Martindale</u><sup>4</sup>
Lorenz Panny<sup>2</sup> Joost Renes<sup>3</sup>
```

 1 KU Leuven 2 TU Eindhoven 3 RU Nijmegen 4 University of Bristol

Heilbronn Seminar, 11th December 2019

History

- 1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
- 1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
- 1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
- 1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
- 1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
- 2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

- 2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
- 2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
- 2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
- 2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
- 2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
- 2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_p (CSIDH)

(History slides mostly stolen from Wouter Castryck)

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation);
 previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange
- ► Flexible:
 - ► Compatible with 0-RTT protocols such as QUIC
 - ► [DG] uses CSIDH for 'SeaSign' signatures
 - ► [DGOPS] uses CSIDH for oblivious transfer
 - ► [FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

→ Idea:

Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S$$
.

Cycles are compatible: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

► We want to replace the exponentiation map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ► Replace *G* by the set *S* of supersingular elliptic curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Replace \mathbb{Z} by a commutative group H... more details to come!
- ▶ The action of a well-chosen $h \in H$ on S moves the elliptic curves one step around one of the cycles.

Diffie-Hellman on 'nice' graphs

Diffie-Hellman on 'nice' graphs

Diffie-Hellman on 'nice' graphs

A walkable graph

▶ Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

A walkable graph

- ▶ Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ► Edges: 3-, 5-, and 7-isogenies (more details to come).

A walkable graph

- ► Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ► Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

- IP1 ► The graph is a composition of compatible cycles.
- IP2 ► We can compute neighbours in given directions.

First some reminders:

► An elliptic curve E/\mathbb{F}_p (for $p \ge 5$) is supersingular if $\#E(\mathbb{F}_p) = p + 1$.

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \ge 5$) is supersingular if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An isogeny between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \ge 5$) is supersingular if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An isogeny between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \ge 5$) is supersingular if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An isogeny between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.
- ▶ If $f: E \to E'$ is an ℓ -isogeny, there is a unique dual isogeny $f^{\vee}: E' \to E$ such that $f^{\vee} \circ f = [\ell]$ is the multiplication-by- ℓ map on E.

- ▶ An elliptic curve E/\mathbb{F}_p (for $p \ge 5$) is supersingular if $\#E(\mathbb{F}_p) = p + 1$.
- ▶ An isogeny between two elliptic curves $E \rightarrow E'$ is a surjective morphism (of abelian varieties) that preserves the identity.
- ▶ For elliptic curves $E, E'/\mathbb{F}_p$ and a prime $\ell \neq p$, an ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.
- ▶ If $f: E \to E'$ is an ℓ -isogeny, there is a unique dual isogeny $f^{\vee}: E' \to E$ such that $f^{\vee} \circ f = [\ell]$ is the multiplication-by- ℓ map on E.
- ▶ The dual isogeny is also an ℓ -isogeny.

Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

Definition

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

In our example, these are $G_3 \cup G_5 \cup G_7$:

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E/\mathbb{F}_p is the graph with:

- ▶ Nodes: elliptic curves E'/\mathbb{F}_p with $\#E(\mathbb{F}_p) = \#E'(\mathbb{F}_p)$ (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: we draw an edge E E' to represent an ℓ -isogeny $f: E \to E'$ together with its dual ℓ -isogeny.

• Generally, the G_ℓ look something like G_3 :

▶ We want to make sure G_ℓ is a cycle.

- ▶ We want to make sure G_ℓ is a cycle.
- ▶ Equivalently: every node in G_{ℓ} should be distance zero from the cycle.

- ▶ We want to make sure G_{ℓ} is a cycle.
- ▶ Equivalently: every node in G_{ℓ} should be distance zero from the cycle.
- ► Two nodes are at different distances from the cycle if and only if they have different endomorphism rings.

Definition

An endomorphism of an elliptic curve E is a morphism $E \to E$ (as abelian varieties).

Definition

An endomorphism of an elliptic curve E is a morphism $E \to E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

▶ For $n \in \mathbb{Z}$, the mulitplication-by-n map

$$[n]: E \rightarrow E$$

$$P \mapsto nP$$

is an endomorphism.

Definition

An endomorphism of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example

Let E/\mathbb{F}_p be an elliptic curve.

▶ For $n \in \mathbb{Z}$, the mulitplication-by-n map

$$[n]: E \rightarrow E$$

$$P \mapsto nP$$

is an endomorphism.

► The Frobenius map

$$\pi: E \to E$$
$$(x,y) \mapsto (x^p, y^p)$$

is an endomorphism.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Definition

The \mathbb{F}_p -rational endomorphism ring $\operatorname{End}_{\mathbb{F}_p}(E)$ of an elliptic curve E/\mathbb{F}_p is the set of \mathbb{F}_p -rational endomorphisms.

Example

Let p > 3, let $E/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ be a supersingular elliptic curve, and let π be the Frobenius endomorphism. Then

$$\pi \circ \pi = [-p]$$

and

$$\begin{array}{ccc} \mathbb{Z}[\sqrt{-p}] & \to & \operatorname{End}_{\mathbb{F}_p}(E) \\ n & \mapsto & [n] \\ \sqrt{-p} & \mapsto & \pi \end{array}$$

extends \mathbb{Z} -linearly to a ring homomorphism.

For $p \equiv 3 \pmod 8$ and $p \ge 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

For $p \equiv 3 \pmod 8$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \to G$ with a commutative group action $H \times S \to S$.

For $p \equiv 3 \pmod 8$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \to G$ with a commutative group action $H \times S \to S$.
- ► The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.

For $p \equiv 3 \pmod 8$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \to G$ with a commutative group action $H \times S \to S$.
- ► The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ► The group $H = \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.

For $p \equiv 3 \pmod 8$ and $p \geq 5$, if $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E_A) \cong \mathbb{Z}[\sqrt{-p}]$.

- ▶ Remember: we want to replace exponentiation $\mathbb{Z} \times G \to G$ with a commutative group action $H \times S \to S$.
- ► The set *S* is the set of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ The group $H = \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_p}(E_A)$ for (every) $E_A \in S$.
- ▶ What is the action?

▶ Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E_A)$ be an ideal.

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

► Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).

- ▶ Let $I \subset \text{End}_{\mathbb{F}_p}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ► Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ▶ Define

$$f_I: E \to E/H_I$$

to be the isogeny from E with kernel H_I .

- ▶ Let $I \subset \text{End}_{\mathbb{F}_n}(E_A)$ be an ideal.
- ► Then

$$H_I = \bigcap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

- ► Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- ▶ Define

$$f_I: E \to E/H_I$$

to be the isogeny from E with kernel H_I .

▶ For [I] ∈ Cl($\mathbb{Z}[\sqrt{-p}]$), let \tilde{I} be an integral representative of the ideal class [I]. Then

$$Cl(\mathbb{Z}[\sqrt{-p}]) \times S \rightarrow S$$

 $([I], E) \mapsto f_{H_{\bar{i}}}(E)$

is a free, transitive group action!

IP1: The graph is a composition of compatible cycles

▶ The nodes of the graph are the set *S* of supersingular elliptic curves $E/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.

IP1: The graph is a composition of compatible cycles

- ► The nodes of the graph are the set *S* of supersingular elliptic curves $E/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.
- ► The map

$$Cl(\mathbb{Z}[\sqrt{-p}]) \times S \rightarrow S$$

 $([I], E) \mapsto f_{H_{\bar{i}}}(E)$

is a free, transitive group action.

IP1: The graph is a composition of compatible cycles

- ▶ The nodes of the graph are the set *S* of supersingular elliptic curves $E/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.
- ► The map

$$Cl(\mathbb{Z}[\sqrt{-p}]) \times S \rightarrow S$$

 $([I], E) \mapsto f_{H_{\bar{i}}}(E)$

is a free, transitive group action.

▶ Edges are the isogenies $f_{H_{\tilde{i}}}$ (together with their duals).

IP1: The graph is a composition of compatible cycles

- ▶ The nodes of the graph are the set *S* of supersingular elliptic curves $E/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.
- ► The map

$$Cl(\mathbb{Z}[\sqrt{-p}]) \times S \rightarrow S$$

 $([I], E) \mapsto f_{H_{\bar{i}}}(E)$

is a free, transitive group action.

- ▶ Edges are the isogenies $f_{H_{\tilde{i}}}$ (together with their duals).
- \rightsquigarrow there is a choice of ℓ_1, \dots, ℓ_n such that $G_{\ell_1} \cup \dots \cup G_{\ell_n}$ is a composition of compatible cycles (IP1).

IP2: Compute neighbours in given directions.

IP2: Compute neighbours in given directions.

► Our group action was:

$$\begin{array}{ccc} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E) & \mapsto & f_{H_{\bar{I}}}(E) =: [I] * E. \end{array}$$

IP2: Compute neighbours in given directions.

► Our group action was:

$$\begin{array}{ccc} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E) & \mapsto & f_{H_{\tilde{I}}}(E) =: [I] * E. \end{array}$$

▶ For $\ell \in \{\ell_1, \dots, \ell_n\}$ as before and $[I] \in \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\overline{I}}}(E)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

IP2: Compute neighbours in given directions.

► Our group action was:

$$\begin{array}{cccc} \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \to & S \\ ([I], E) & \mapsto & f_{H_{\tilde{I}}}(E) =: [I] * E. \end{array}$$

▶ For $\ell \in \{\ell_1, \dots, \ell_n\}$ as before and $[I] \in \operatorname{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\overline{l}}}(E)$ is an ℓ -isogeny if and only if

$$[I] = [\langle \ell, \pi \pm 1 \rangle].$$

Choosing the direction in the graph corresponds to choosing this sign.

To compute a neighbour of E, we have to compute an ℓ -isogeny from a given elliptic curve. To do this:

▶ Find a point P of order ℓ on E.

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$.

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
- ► For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .

- ▶ Find a point P of order ℓ on E.
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
- ▶ Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p + 1)/2.
- ► For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ▶ Given a \mathbb{F}_p -rational point of order ℓ , the isogeny computations can be done over \mathbb{F}_p .

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_{ℓ} for odd $\ell | (p+1)$:

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_{ℓ} for odd $\ell | (p+1)$:

▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_{ℓ} for odd $\ell | (p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P,Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_ℓ for odd $\ell | (p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P,Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_{ℓ} for odd $\ell | (p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P,Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.
- ▶ The other eigenvalue of Frobenius is $p/\lambda \in \mathbb{Z}/\ell\mathbb{Z}$.

To compute the neighbours of supersingular E/\mathbb{F}_p with $p \ge 5$ in its ℓ -isogeny graph G_{ℓ} for odd $\ell | (p+1)$:

- ▶ Fix conditions as before so that G_ℓ is a cycle, i.e., E has two neighbours.
- ▶ Find a basis $\{P,Q\}$ of the ℓ -torsion with $P \in \mathbb{F}_p$.
- ▶ $1 \in \mathbb{Z}/\ell\mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ -torsion; the action $[\langle \ell, \pi 1 \rangle] * E$ gives an ℓ -isogeny in the '+' direction.
- ▶ The other eigenvalue of Frobenius is $p/\lambda \in \mathbb{Z}/\ell\mathbb{Z}$.
- ▶ If $p \equiv -1 \pmod{\ell}$ then the action $[\langle \ell, \pi + 1 \rangle] * E$ gives an ℓ -isogeny in the '-' direction.

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell | (p+1) ?$

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p=4\ell_1\cdots\ell_n-1$ ensures:

▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell | (p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)

 $^{^1}$ You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell|(p+1)$? Choosing $p=4\ell_1\cdots\ell_n-1$ ensures:

- ▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ▶ $p \equiv -1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

 $^{^1}$ You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

For which ℓ can we (efficiently) compute the neighbours of supersingular E/\mathbb{F}_p in its ℓ -isogeny graph G_ℓ for odd $\ell | (p+1)$? Choosing $p = 4\ell_1 \cdots \ell_n - 1$ ensures:

- ▶ Every $\ell_i | (p+1)$, so there is a rational basis point of the ℓ_i -torsion
- ▶ $p \equiv 3 \pmod{8}$, so G_{ℓ_i} is a cycle (we have our group action)
- ▶ $p \equiv -1 \pmod{\ell_i}$, so ℓ_i -isogenies come from action of $[\langle \ell_i, \pi \pm 1 \rangle]$.

Given the group action as above, Vélu's formulas give actual isogenies!

With our design choices all isogeny computations are over \mathbb{F}_p . ¹

¹You still need a little more to get computations for both the + and - directions to be over \mathbb{F}_p

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

- \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
- ⇒ Tiny keys!

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- ▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p+1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p+1]P = \infty$.

²This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$.

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .

Classical Security

- ► Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- ▶ Say Alice's secret is isogeny is of degree $\ell_1^{e_1} \cdots \ell_n^{e_n}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O(\sum e_i \ell_i)$. An attacker has to compute one isogeny of large degree
- ▶ Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_0 to E_A , whereas an attacker has compute all the possible paths from E_0 .
- ▶ Best classical attacks are (variants of) meet-in-the-middle: Time $O(\sqrt[4]{p})$.

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

► Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- ► Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- ► Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- ► Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS their attack also applies to CSIDH.
- ► Part of CJS attack computes many paths in superposition.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).
- ► Most previous analysis focussed on asymptotics

BLMP gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using 765325228976 $\approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).
- ► Most previous analysis focussed on asymptotics
- BLMP gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using 765325228976 $\approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
 - ► For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2⁸¹ qubit operations.³

³From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

► Fast and constant-time implementation.

- ► Fast and constant-time implementation.
- ► Hardware implementation.

- ► Fast and constant-time implementation.
- ► Hardware implementation.
- ► More applications.

- ► Fast and constant-time implementation.
- ► Hardware implementation.
- ► More applications.
- ► Exploit more types of isogeny graphs (e.g. of abelian surfaces).
- ► [Your paper here!]

References

Mentioned in this tall	M	[entic	ned	in	this	tal	k
------------------------	---	--------	-----	----	------	-----	---

- BLMP Bernstein, Lange, Martindale, and Panny:

 Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies

 https://quantum.isogenv.org
 - BS Bonnetain, Schrottenloher:

 Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes

 https://ia.cr/2018/537
- CLMPR Castryck, Lange, Martindale, Panny, Renes: CSIDH: An Efficient Post-Quantum Commutative Group Action https://ia.cr/2018/383
 - CJS Childs, Jao, and Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
 - DG De Feo, Galbraith: SeaSign: Compact isogeny signatures from class group actions https://ia.cr/2018/824
 - DKS De Feo, Kieffer, Smith:

 Towards practical key exchange from ordinary isogeny graphs

 https://ia.cr/2018/485

References

Menti	oned in this tark (conta.).
DOPS	Delpech de Saint Guilhem, Orsini, Petit, and Smart:
	Secure Oblivious Transfer from Semi-Commutative Masking
	https://ia.cr/2018/648
FTY	Fujioka, Takashima, and Yoneyama:
	One-Round Authenticated Group Key Exchange from Isogenies
	https://eprint.iacr.org/2018/1033
MR	Meyer, Reith:
	A faster way to the CSIDH
	https://ia.cr/2018/782

Kup1 Kuperberg:

Mantional in this tall, (soutd).

 $A \ subexponential-time \ quantum \ algorithm \ for \ the \ dihedral \ hidden \ subgroup \ problem \ https://arxiv.org/abs/quant-ph/0302112$

Kup2 Kuperberg:

Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/1112.3333

Reg Regev:

A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space

https://arxiv.org/abs/quant-ph/0406151

References

Further reading:

BIJ Biasse, Iezzi, Jacobson:

A note on the security of CSIDH https://arxiv.org/pdf/1806.03656

DPV Decru, Panny, and Vercauteren:

Faster SeaSign signatures through improved rejection sampling https://eprint.iacr.org/2018/1109

JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:

A polynomial quantum space attack on CRS and CSIDH

(MathCrypt 2018)

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful pictures.