Non-interactive post-quantum key-exchange from isogeny graphs of elliptic curves

Wouter Castryck ${ }^{1}$ Tanja Lange ${ }^{2}$ Chloe Martindale ${ }^{4}$ Lorenz Panny ${ }^{2}$ Joost Renes ${ }^{3}$
${ }^{1}$ KU Leuven $\quad{ }^{2}$ TU Eindhoven $\quad{ }^{3}$ RU Nijmegen $\quad{ }^{4}$ University of Bristol

Heilbronn Seminar, 11th December 2019

History

1976 Diffie-Hellman: Key exchange using exponentiation in groups (DH)
1985 Koblitz-Miller: Diffie-Hellman style key exchange using multiplication in elliptic curve groups (ECDH)
1990 Brassard-Yung: Generalizes 'group exponentiation' to 'groups acting on sets' in a crypto context
1994 Shor: Polynomial-time quantum algorithm to break the discrete logarithm problem in any group, quantumly breaking DH and ECDH
1997 Couveignes: Post-quantum isogeny-based Diffie-Hellman-style key exchange using commutative group actions (not published at the time)
2003 Kuperberg: Subexponential-time quantum algorithm to attack cryptosystems based on a hidden shift

History

2004 Stolbunov-Rostovtsev independently rediscover Couveignes' scheme (CRS)
2006 Charles-Goren-Lauter: Build hash function from supersingular isogeny graph
2010 Childs-Jao-Soukharev: Apply Kuperberg's (and Regev's) hidden shift subexponential quantum algorithm to CRS
2011 Jao-De Feo: Build Diffie-Hellman style key exchange from supersingular isogeny graph (SIDH)
2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS
2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of De Feo, Kieffer, Smith to supersingular curves over \mathbb{F}_{p} (CSIDH)
(History slides mostly stolen from Wouter Castryck)

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Small keys: 64 bytes at conjectured AES-128 security level

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Small keys: 64 bytes at conjectured AES-128 security level
- Competitive speed: $\sim 85 \mathrm{~ms}$ for a full key exchange

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Small keys: 64 bytes at conjectured AES-128 security level
- Competitive speed: $\sim 85 \mathrm{~ms}$ for a full key exchange
- Flexible:
- Compatible with 0-RTT protocols such as QUIC
- [DG] uses CSIDH for ‘SeaSign’ signatures
- [DGOPS] uses CSIDH for oblivious transfer
- [FTY] uses CSIDH for authenticated group key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.
\rightsquigarrow Idea:
Replace exponentiation on the group G by a group action of a group H on a set S :

$$
H \times S \rightarrow S
$$

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Square-and-multiply

Square-and-multiply

Square-and-multiply

Cycles are compatible: [right, then left $]=[l e f t$, then right $]$, etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

Graphs of elliptic curves

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Graphs of elliptic curves

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}. Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H... more details to come!
- The action of a well-chosen $h \in H$ on S moves the elliptic curves one step around one of the cycles.

Graphs of elliptic curves

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[+,+,-,+]}
\end{gathered}
$$

Diffie-Hellman on 'nice' graphs

Alice
$[+,-,+,-]$

> Bob
> $[\underset{\uparrow}{+},+,-,+]$

Diffie-Hellman on 'nice' graphs

> Alice
> $[+,-,+,-]$

> Bob
> $[+,+\underset{\uparrow}{+},-,+]$

Diffie-Hellman on 'nice' graphs

> Alice
> $[+,-,+,-]$

> Bob
> $\left[+,+, \frac{-}{\uparrow},+\right]$

Diffie-Hellman on 'nice' graphs

> Alice
> $[+,-,+,-\underset{\uparrow}{-]}$

> Bob
> $[+,+,-,+\underset{\uparrow}{ }$

Diffie-Hellman on 'nice' graphs

Diffie-Hellman on 'nice' graphs

> Alice
> $[+,-,+,-]$

Bob

$[+,+,-,+]$

Diffie-Hellman on 'nice' graphs

> Alice
> $[+, \underset{\uparrow}{-},+,-]$

> Bob
> $[+,+,--,+]$

Diffie-Hellman on 'nice' graphs

> Alice
> $[+,-,+,-]$

> Bob
> $[+,+,-,++]$

Diffie-Hellman on 'nice' graphs

> Alice
> $\left[+,-,+,-\frac{]}{\uparrow}\right.$

> Bob
> $[+,+,-,++]$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[+,+,-,+]}
\end{gathered}
$$

A walkable graph

- Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

A walkable graph

- Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Edges: 3-, 5-, and 7-isogenies (more details to come).

A walkable graph

- Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:
IP1 - The graph is a composition of compatible cycles.
IP2 We can compute neighbours in given directions.

Towards IP1: Isogeny graphs

First some reminders:

- An elliptic curve E / \mathbb{F}_{p} (for $p \geq 5$) is supersingular if $\# E\left(\mathbb{F}_{p}\right)=p+1$.

Towards IP1: Isogeny graphs

First some reminders:

- An elliptic curve E / \mathbb{F}_{p} (for $p \geq 5$) is supersingular if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- An isogeny between two elliptic curves $E \rightarrow E^{\prime}$ is a surjective morphism (of abelian varieties) that preserves the identity.

Towards IP1: Isogeny graphs

First some reminders:

- An elliptic curve E / \mathbb{F}_{p} (for $p \geq 5$) is supersingular if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- An isogeny between two elliptic curves $E \rightarrow E^{\prime}$ is a surjective morphism (of abelian varieties) that preserves the identity.
- For elliptic curves $E, E^{\prime} / \mathbb{F}_{p}$ and a prime $\ell \neq p$, an ℓ-isogeny $f: E \rightarrow E^{\prime}$ is an isogeny with $\# \operatorname{ker}(f)=\ell$.

Towards IP1: Isogeny graphs

First some reminders:

- An elliptic curve E / \mathbb{F}_{p} (for $p \geq 5$) is supersingular if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- An isogeny between two elliptic curves $E \rightarrow E^{\prime}$ is a surjective morphism (of abelian varieties) that preserves the identity.
- For elliptic curves $E, E^{\prime} / \mathbb{F}_{p}$ and a prime $\ell \neq p$, an ℓ-isogeny $f: E \rightarrow E^{\prime}$ is an isogeny with $\# \operatorname{ker}(f)=\ell$.
- If $f: E \rightarrow E^{\prime}$ is an ℓ-isogeny, there is a unique dual isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that $f^{\vee} \circ f=[\ell]$ is the multiplication-by- ℓ map on E.

Towards IP1: Isogeny graphs

First some reminders:

- An elliptic curve E / \mathbb{F}_{p} (for $p \geq 5$) is supersingular if $\# E\left(\mathbb{F}_{p}\right)=p+1$.
- An isogeny between two elliptic curves $E \rightarrow E^{\prime}$ is a surjective morphism (of abelian varieties) that preserves the identity.
- For elliptic curves $E, E^{\prime} / \mathbb{F}_{p}$ and a prime $\ell \neq p$, an ℓ-isogeny $f: E \rightarrow E^{\prime}$ is an isogeny with $\# \operatorname{ker}(f)=\ell$.
- If $f: E \rightarrow E^{\prime}$ is an ℓ-isogeny, there is a unique dual isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that $f^{\vee} \circ f=[\ell]$ is the multiplication-by- ℓ map on E.
- The dual isogeny is also an ℓ-isogeny.

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.
- In our example, these are

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.
- In our example, these are

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.
- In our example, these are

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.
- In our example, these are

Towards IP1: Isogeny graphs

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} containing E / \mathbb{F}_{p} is the graph with:

- Nodes: elliptic curves $E^{\prime} / \mathbb{F}_{p}$ with $\# E\left(\mathbb{F}_{p}\right)=\# E^{\prime}\left(\mathbb{F}_{p}\right)$ (up to \mathbb{F}_{p}-isomorphism).
- Edges: we draw an edge $E-E^{\prime}$ to represent an ℓ-isogeny $f: E \rightarrow E^{\prime}$ together with its dual ℓ-isogeny.
- Generally, the G_{ℓ} look something like

Towards IP1: Endomorphism rings

- We want to make sure G_{ℓ} is a cycle.

Towards IP1: Endomorphism rings

- We want to make sure G_{ℓ} is a cycle.
- Equivalently: every node in G_{ℓ} should be distance zero from the cycle.

Towards IP1: Endomorphism rings

- We want to make sure G_{ℓ} is a cycle.
- Equivalently: every node in G_{ℓ} should be distance zero from the cycle.
- Two nodes are at different distances from the cycle if and only if they have different endomorphism rings.

Towards IP1: Endomorphism rings

Definition

An endomorphism of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Towards IP1: Endomorphism rings

Definition

An endomorphism of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example
Let E / \mathbb{F}_{p} be an elliptic curve.

- For $n \in \mathbb{Z}$, the mulitplication-by- n map

$$
\begin{array}{cccc}
{[n]:} & E & \rightarrow & E \\
& P & \mapsto & n P
\end{array}
$$

is an endomorphism.

Towards IP1: Endomorphism rings

Definition

An endomorphism of an elliptic curve E is a morphism $E \rightarrow E$ (as abelian varieties).

Example
Let E / \mathbb{F}_{p} be an elliptic curve.

- For $n \in \mathbb{Z}$, the mulitplication-by- n map

$$
\begin{array}{cccc}
{[n]:} & E & \rightarrow & E \\
& P & \mapsto & n P
\end{array}
$$

is an endomorphism.

- The Frobenius map

$$
\begin{array}{cccc}
\pi: & E & \rightarrow & E \\
& (x, y) & \mapsto & \left(x^{p}, y^{p}\right)
\end{array}
$$

is an endomorphism.

Towards IP1: Endomorphism rings

Definition
The \mathbb{F}_{p}-rational endomorphism ring $\operatorname{End}_{\mathbb{F}_{p}}(E)$ of an elliptic curve E / \mathbb{F}_{p} is the set of \mathbb{F}_{p}-rational endomorphisms.

Towards IP1: Endomorphism rings

Definition
The \mathbb{F}_{p}-rational endomorphism ring $\operatorname{End}_{\mathbb{F}_{p}}(E)$ of an elliptic curve E / \mathbb{F}_{p} is the set of \mathbb{F}_{p}-rational endomorphisms.

Example
Let $p>3$, let $E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ be a supersingular elliptic curve, and let π be the Frobenius endomorphism. Then

$$
\pi \circ \pi=[-p]
$$

and

$$
\begin{array}{ccc}
\mathbb{Z}[\sqrt{-p}] & \rightarrow & \operatorname{End}_{\mathbb{F}_{p}}(E) \\
n & \mapsto & {[n]} \\
\sqrt{-p} & \mapsto & \pi
\end{array}
$$

extends \mathbb{Z}-linearly to a ring homomorphism.

Towards IP1: Group action

$$
\begin{aligned}
& \text { For } p \equiv 3(\bmod 8) \text { and } p \geq 5, \text { if } E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x \text { is } \\
& \text { supersingular, then } \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}] .
\end{aligned}
$$

Towards IP1: Group action

For $p \equiv 3(\bmod 8)$ and $p \geq 5$, if $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ is
supersingular, then $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}]$.

- Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a commutative group action $H \times S \rightarrow S$.

Towards IP1: Group action

$$
\begin{aligned}
& \text { For } p \equiv 3(\bmod 8) \text { and } p \geq 5, \text { if } E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x \text { is } \\
& \text { supersingular, then } \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}] .
\end{aligned}
$$

- Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a commutative group action $H \times S \rightarrow S$.
- The set S is the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.

Towards IP1: Group action

$$
\begin{aligned}
& \text { For } p \equiv 3(\bmod 8) \text { and } p \geq 5, \text { if } E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x \text { is } \\
& \text { supersingular, then } \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}] .
\end{aligned}
$$

- Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a commutative group action $H \times S \rightarrow S$.
- The set S is the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.
- The group $H=\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ for (every) $E_{A} \in S$.

Towards IP1: Group action

$$
\begin{aligned}
& \text { For } p \equiv 3(\bmod 8) \text { and } p \geq 5, \text { if } E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x \text { is } \\
& \text { supersingular, then } \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right) \cong \mathbb{Z}[\sqrt{-p}] .
\end{aligned}
$$

- Remember: we want to replace exponentiation $\mathbb{Z} \times G \rightarrow G$ with a commutative group action $H \times S \rightarrow S$.
- The set S is the set of supersingular elliptic curves $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.
- The group $H=\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$ is the class group of $\operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ for (every) $E_{A} \in S$.
- What is the action?

Towards IP1: Group action

- Let $I \subset \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ be an ideal.

Towards IP1: Group action

- Let $I \subset \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ be an ideal.
- Then

$$
H_{I}=\bigcap_{\alpha \in I} \operatorname{ker}(\alpha)
$$

is a subgroup of $E\left(\overline{F_{p}}\right)$.

Towards IP1: Group action

- Let $I \subset \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ be an ideal.
- Then

$$
H_{I}=\bigcap_{\alpha \in I} \operatorname{ker}(\alpha)
$$

is a subgroup of $E\left(\overline{\mathbb{F}_{p}}\right)$.

- Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).

Towards IP1: Group action

- Let $I \subset \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ be an ideal.
- Then

$$
H_{I}=\bigcap_{\alpha \in I} \operatorname{ker}(\alpha)
$$

is a subgroup of $E\left(\overline{\mathbb{F}_{p}}\right)$.

- Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- Define

$$
f_{I}: E \rightarrow E / H_{I}
$$

to be the isogeny from E with kernel H_{I}.

Towards IP1: Group action

- Let $I \subset \operatorname{End}_{\mathbb{F}_{p}}\left(E_{A}\right)$ be an ideal.
- Then

$$
H_{I}=\bigcap_{\alpha \in I} \operatorname{ker}(\alpha)
$$

is a subgroup of $E\left(\overline{\mathbb{F}_{p}}\right)$.

- Recall that isogenies are uniquely defined by their kernels (cf. First Isomorphism Theorem of Groups).
- Define

$$
f_{I}: E \rightarrow E / H_{I}
$$

to be the isogeny from E with kernel H_{I}.

- For $[I] \in \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$, let \tilde{I} be an integral representative of the ideal class $[I]$. Then

$$
\begin{array}{ccc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)
\end{array}
$$

is a free, transitive group action!

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.
- The map

$$
\begin{array}{ccc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)
\end{array}
$$

is a free, transitive group action.

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.
- The map

$$
\begin{array}{ccc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)
\end{array}
$$

is a free, transitive group action.

- Edges are the isogenies $f_{H_{\bar{I}}}$ (together with their duals).

IP1: The graph is a composition of compatible cycles

- The nodes of the graph are the set S of supersingular elliptic curves $E / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $p \equiv 3(\bmod 8)$ and $p \geq 5$.
- The map

$$
\begin{array}{ccc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)
\end{array}
$$

is a free, transitive group action.

- Edges are the isogenies $f_{H_{\bar{I}}}$ (together with their duals). \rightsquigarrow there is a choice of $\ell_{1}, \ldots, \ell_{n}$ such that $G_{\ell_{1}} \cup \cdots \cup G_{\ell_{n}}$ is a composition of compatible cycles (IP1).

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- Our group action was:

$$
\begin{array}{clc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)=:[I] * E .
\end{array}
$$

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- Our group action was:

$$
\begin{array}{ccc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)=:[I] * E .
\end{array}
$$

- For $\ell \in\left\{\ell_{1}, \cdots, \ell_{n}\right\}$ as before and $[I] \in \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\bar{I}}}(E)$ is an ℓ-isogeny if and only if

$$
[I]=[\langle\ell, \pi \pm 1\rangle] .
$$

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

- Our group action was:

$$
\begin{array}{clc}
\mathrm{Cl}(\mathbb{Z}[\sqrt{-p}]) \times S & \rightarrow & S \\
([I], E) & \mapsto & f_{H_{\bar{I}}}(E)=:[I] * E .
\end{array}
$$

- For $\ell \in\left\{\ell_{1}, \cdots, \ell_{n}\right\}$ as before and $[I] \in \mathrm{Cl}(\mathbb{Z}[\sqrt{-p}])$, the isogeny $f_{H_{\bar{I}}}(E)$ is an ℓ-isogeny if and only if

$$
[I]=[\langle\ell, \pi \pm 1\rangle] .
$$

- Choosing the direction in the graph corresponds to choosing this sign.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.
- For every odd prime $\ell \mid(p+1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an ℓ-isogeny from a given elliptic curve. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas (implemented in Sage).
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.
- For every odd prime $\ell \mid(p+1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ.
- Given a \mathbb{F}_{p}-rational point of order ℓ, the isogeny computations can be done over \mathbb{F}_{p}.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

- Fix conditions as before so that G_{ℓ} is a cycle, i.e., E has two neighbours.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

- Fix conditions as before so that G_{ℓ} is a cycle, i.e., E has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ-torsion with $P \in \mathbb{F}_{p}$.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

- Fix conditions as before so that G_{ℓ} is a cycle, i.e., E has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ-torsion with $P \in \mathbb{F}_{p}$.
- $1 \in \mathbb{Z} / \ell \mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ-torsion; the action $[\langle\ell, \pi-1\rangle] * E$ gives an ℓ-isogeny in the ' + ' direction.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

- Fix conditions as before so that G_{ℓ} is a cycle, i.e., E has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ-torsion with $P \in \mathbb{F}_{p}$.
- $1 \in \mathbb{Z} / \ell \mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ-torsion; the action $[\langle\ell, \pi-1\rangle] * E$ gives an ℓ-isogeny in the ' + ' direction.
- The other eigenvalue of Frobenius is $p / \lambda \in \mathbb{Z} / \ell \mathbb{Z}$.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E / \mathbb{F}_{p} with $p \geq 5$ in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$:

- Fix conditions as before so that G_{ℓ} is a cycle, i.e., E has two neighbours.
- Find a basis $\{P, Q\}$ of the ℓ-torsion with $P \in \mathbb{F}_{p}$.
- $1 \in \mathbb{Z} / \ell \mathbb{Z}$ is an eigenvalue of Frobenius on the ℓ-torsion; the action $[\langle\ell, \pi-1\rangle] * E$ gives an ℓ-isogeny in the ' + ' direction.
- The other eigenvalue of Frobenius is $p / \lambda \in \mathbb{Z} / \ell \mathbb{Z}$.
- If $p \equiv-1(\bmod \ell)$ then the action $[\langle\ell, \pi+1\rangle] * E$ gives an ℓ-isogeny in the '-' direction.

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E / \mathbb{F}_{p} in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$?
${ }^{1}$ You still need a little more to get computations for both the + and directions to be over \mathbb{F}_{p}

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E / \mathbb{F}_{p} in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$? Choosing $p=4 \ell_{1} \cdots \ell_{n}-1$ ensures:

- Every $\ell_{i} \mid(p+1)$, so there is a rational basis point of the ℓ_{i}-torsion
${ }^{1}$ You still need a little more to get computations for both the + and directions to be over \mathbb{F}_{p}

IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E / \mathbb{F}_{p} in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$? Choosing $p=4 \ell_{1} \cdots \ell_{n}-1$ ensures:

- Every $\ell_{i} \mid(p+1)$, so there is a rational basis point of the ℓ_{i}-torsion
- $p \equiv 3(\bmod 8)$, so $G_{\ell_{i}}$ is a cycle (we have our group action)

[^0]
IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E / \mathbb{F}_{p} in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$? Choosing $p=4 \ell_{1} \cdots \ell_{n}-1$ ensures:

- Every $\ell_{i} \mid(p+1)$, so there is a rational basis point of the ℓ_{i}-torsion
- $p \equiv 3(\bmod 8)$, so $G_{\ell_{i}}$ is a cycle (we have our group action)
- $p \equiv-1\left(\bmod \ell_{i}\right)$, so ℓ_{i}-isogenies come from action of $\left[\left\langle\ell_{i}, \pi \pm 1\right\rangle\right]$.

[^1]
IP2: Computing neighbours in given directions

For which ℓ can we (efficiently) compute the neighbours of supersingular E / \mathbb{F}_{p} in its ℓ-isogeny graph G_{ℓ} for odd $\ell \mid(p+1)$?
Choosing $p=4 \ell_{1} \cdots \ell_{n}-1$ ensures:

- Every $\ell_{i} \mid(p+1)$, so there is a rational basis point of the ℓ_{i}-torsion
- $p \equiv 3(\bmod 8)$, so $G_{\ell_{i}}$ is a cycle (we have our group action)
- $p \equiv-1\left(\bmod \ell_{i}\right)$, so ℓ_{i}-isogenies come from action of $\left[\left\langle\ell_{i}, \pi \pm 1\right\rangle\right]$.
Given the group action as above, Vélu's formulas give actual isogenies!
With our design choices all isogeny computations are over $\mathbb{F}_{p} .{ }^{1}$

[^2]
Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_{p}$.

Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_{p}$.
\Rightarrow Tiny keys!

Does any A work?

${ }^{2}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.
${ }^{2}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.

- About $\sqrt{\bar{p}}$ of all $A \in \mathbb{F}_{p}$ are valid keys.
${ }^{2}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.

- About $\sqrt{\bar{p}}$ of all $A \in \mathbb{F}_{p}$ are valid keys.
- Public-key validation: Check that E_{A} has $p+1$ points.

Easy Monte-Carlo algorithm: Pick random P on E_{A} and check $[p+1] P=\infty .^{2}$
${ }^{2}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Classical Security

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.

Classical Security

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree $\ell_{1}^{e_{1}} \cdots \ell_{n}^{e_{n}}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O\left(\sum e_{i} \ell_{i}\right)$.

Classical Security

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree $\ell_{1}^{e_{1}} \cdots \ell_{n}^{e_{n}}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O\left(\sum e_{i} \ell_{i}\right)$. An attacker has to compute one isogeny of large degree

Classical Security

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree $\ell_{1}^{e_{1}} \cdots \ell_{n}^{e_{n}}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O\left(\sum e_{i} \ell_{i}\right)$. An attacker has to compute one isogeny of large degree
- Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_{0} to E_{A}, whereas an attacker has compute all the possible paths from E_{0}.

Classical Security

- Security is based on the isogeny problem: given two elliptic curves, compute an isogeny between them.
- Say Alice's secret is isogeny is of degree $\ell_{1}^{e_{1}} \cdots \ell_{n}^{e_{n}}$. She knows the path, so can do only small degree isogeny computations, giving complexity $O\left(\sum e_{i} \ell_{i}\right)$. An attacker has to compute one isogeny of large degree
- Alternative way of thinking about it: Alice has to compute the isogeny corresponding to one path from E_{0} to E_{A}, whereas an attacker has compute all the possible paths from E_{0}.
- Best classical attacks are (variants of) meet-in-the-middle: Time $O(\sqrt[4]{p})$.

Quantum Security

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

Quantum Security

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.

Quantum Security

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity (Kuperberg, Regev).

- Kuperberg's algorithm [Kup1] requires a subexponential number of queries, and a subexponential number of operations on a subexponential number of qubits.
- Variant by Regev [Reg] uses polynomial number of qubits at the expense of time.
- Kuperberg later [Kup2] gave more trade-off options for quantum and classical memory vs. time.
- Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to CRS - their attack also applies to CSIDH.
- Part of CJS attack computes many paths in superposition.

Quantum Security

- The exact cost of the Kuperberg/Regev /CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).

[^3]
Quantum Security

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- Most previous analysis focussed on asymptotics

[^4]
Quantum Security

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- Most previous analysis focussed on asymptotics

BLMP gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

[^5]
Quantum Security

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- Most previous analysis focussed on asymptotics

BLMP gives full computer-verified simulation of quantum evaluation of isogenies. Computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

- For fastest variant of Kuperberg (uses billions of qubits), total cost of CSIDH-512 attack is about 2^{81} qubit operations. ${ }^{3}$

[^6]
Work in progress \& future work

- Fast and constant-time implementation.

Work in progress \& future work

- Fast and constant-time implementation.
- Hardware implementation.

Work in progress \& future work

- Fast and constant-time implementation.
- Hardware implementation.
- More applications.

Work in progress \& future work

- Fast and constant-time implementation.
- Hardware implementation.
- More applications.
- Exploit more types of isogeny graphs (e.g. of abelian surfaces).
- [Your paper here!]

References

Mentioned in this talk:
BLMP Bernstein, Lange, Martindale, and Panny:
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies https://quantum.isogeny.org
BS Bonnetain, Schrottenloher:
Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes https://ia.cr/2018/537
CLMPR Castryck, Lange, Martindale, Panny, Renes: CSIDH: An Efficient Post-Quantum Commutative Group Action https://ia.cr/2018/383
CJS Childs, Jao, and Soukharev:
Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
DG De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions https://ia.cr/2018/824
DKS De Feo, Kieffer, Smith:
Towards practical key exchange from ordinary isogeny graphs
https://ia.cr/2018/485

References

Mentioned in this talk (contd.):
DOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:
Secure Oblivious Transfer from Semi-Commutative Masking https://ia.cr/2018/648
FTY Fujioka, Takashima, and Yoneyama:
One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033
MR Meyer, Reith:
A faster way to the CSIDH
https://ia.cr/2018/782
Kup1 Kuperberg:
A subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/quant-ph/0302112
Kup2 Kuperberg:
Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem https://arxiv.org/abs/1112.3333
Reg Regev:
A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space
https://arxiv.org/abs/quant-ph/0406151

References

Further reading:
BIJ Biasse, Iezzi, Jacobson:
A note on the security of CSIDH
https://arxiv.org/pdf/1806.03656
DPV Decru, Panny, and Vercauteren:
Faster SeaSign signatures through improved rejection sampling
https://eprint.iacr.org/2018/1109
JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:
A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)
Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful pictures.

[^0]: ${ }^{1}$ You still need a little more to get computations for both the + and directions to be over \mathbb{F}_{p}

[^1]: ${ }^{1}$ You still need a little more to get computations for both the + and directions to be over \mathbb{F}_{p}

[^2]: ${ }^{1}$ You still need a little more to get computations for both the + and directions to be over \mathbb{F}_{p}

[^3]: ${ }^{3}$ From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

[^4]: ${ }^{3}$ From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

[^5]: ${ }^{3}$ From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

[^6]: ${ }^{3}$ From [BLMP], using query count of [BS]. [BS] also study quantum evaluation of isogenies but their current preprint misses some costs.

