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History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation” to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift
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History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of

De Feo, Kieffer, Smith to supersingular curves over [,
(CSIDH)

(History slides mostly stolen from Wouter Castryck)
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Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH
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Why CSIDH?

v

Drop-in post-quantum replacement for (EC)DH

v

Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

v

Small keys: 64 bytes at conjectured AES-128 security level

v

Competitive speed: ~ 85ms for a full key exchange
Flexible:

Compatible with 0-RTT protocols such as QUIC

[DG] uses CSIDH for ‘SeaSign’ signatures

[DGOPS] uses CSIDH for oblivious transfer

[FTY] uses CSIDH for authenticated group key exchange

v

v

vYvyy
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Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~
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Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.
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Square-and-multiply

Suppose G = 7,/23 and that Alice computes g*°.

g & g2
g I
g3 . . gzo
g4 . gw
g5 gls
gé . . g17
g7 . . g16
gs g15
g . . 8"
gw gl-l g'lz g13
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Square-and-multiply

Suppose G = 7,/23 and that Alice computes g*°.

g & g%
g g &
£ 8%

g7 g . g16
gS & g15
9" 8 ‘i
8 N P
810\-—»/ 13
gll glz
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Square-and-multiply

Suppose G = 7,/23 and that Alice computes g*°.

0
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§ e &
3 > ’ ° 20
g,/ v
&

& et
g° .X g2 e
P * g6
gs * * g15

. e
9 8 e 14
g k-/-»ls g
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Square-and-multiply
Suppose G = 7,/23 and that Alice computes g*°.

g22
. P
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Square-and-multiply
Suppose G = 7,/23 and that Alice computes g*°.

8‘22

gll
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Square-and-multiply

@ Sl
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Square-and-multiply
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Square-and-multiply
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Square-and-multiply

1 g0 &

Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing

AR
NN
VS AT
S

CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Graphs of elliptic curves

Y “.‘ \;\ % '.‘.““%’5: / Exs
EVEEP NN =

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
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Graphs of elliptic curves

Y “.‘ \;\ % '.‘.““%’5: / Exs
EVEEP NN =

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
Edges: 3-, 5-, and 7-isogenies.

10/35



Quantumifying Exponentiation

» We want to replace the exponentiation map

ZxG — G
(x,8) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Ep:y? = x> + Ax? + x over Fyo.

» Replace Z by a commutative group H... more details to
come!

» The action of a well-chosen i € H on S moves the elliptic
curves one step around one of the cycles.
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Graphs of elliptic curves

A 3-isogeny

cture not to Sfale)— -==

Es;: yZ:x3 Jr51x2 +x — Eg: yz = <|»9xZ +x

97:3 1832 4 x
x2 1833497

1333 415422 —5¢4.97
—x3 46522 4128x—133

(X y)

y

AN

A
E199 £y Epy 220

12/35



Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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A walkable graph

» Nodes: Supersingular elliptic curves E4: y> = x> + Ax? + x
over F419.
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A walkable graph

» Nodes: Supersingular elliptic curves E4: y> = x> + Ax? + x
over F419.

» Edges: 3-, 5-, and 7-isogenies (more details to come).
Important properties for such a walk:

IP1» The graph is a composition of compatible cycles.

IP2» We can compute neighbours in given directions.
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Towards IP1: Isogeny graphs

First some reminders:

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

15/35



Towards IP1: Isogeny graphs

First some reminders:
» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.
» Anisogeny between two elliptic curves E — E’ is a

surjective morphism (of abelian varieties) that preserves
the identity.

15/35



Towards IP1: Isogeny graphs

First some reminders:
» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.
» Anisogeny between two elliptic curves E — E’ is a

surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

15/35



Towards IP1: Isogeny graphs

First some reminders:

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
f¥ : E' — E such that f¥ o f = [{] is the multiplication-by-¢
map on E.

15/35



Towards IP1: Isogeny graphs

First some reminders:
» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.
» Anisogeny between two elliptic curves E — E’ is a

surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
f¥ : E' — E such that f¥ o f = [{] is the multiplication-by-¢
map on E.

» The dual isogeny is also an ¢-isogeny.
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

16 /35



Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
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Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are

G72
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» Generally, the G, look something like
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G3 -5 ...... & G5- S i ' .
— J Nes -7 Y A s.
T ey TR
P A 4 /l\ )

¢
........

16 /35



Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.
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Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.

» Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.
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Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).
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Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP

is an endomorphism.
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Towards IP1: Endomorphism rings

Definition

An endomorphism of an elliptic curve E is a morphism E — E

(as abelian varieties).
Example

Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP
is an endomorphism.
» The Frobenius map
m: E E

.
(xy) = (F,yF)

is an endomorphism.
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Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.
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Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.

Example

Letp > 3,let E/F) : y* = x° + Ax? + x be a supersingular elliptic
curve, and let 7 be the Frobenius endomorphism. Then

mom=[-p]
and
Z[y=p) — Endg,(E)
n — 1]
Ve

extends Z-linearly to a ring homomorphism.
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Towards IP1: Group action

Forp = 3 (mod 8) and p > 5,if Eo/F) : y* = x° + Ax*> + x is
supersingular, then Endy, (Ea) = Z[,/=p].
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Towards IP1: Group action

Forp = 3 (mod 8) and p > 5,if Eo/F) : y* = x° + Ax*> + x is
supersingular, then Endy, (Ea) = Z[,/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fy: y* = x> + Ax? + x with p = 3 (mod 8) and p > 5.

» The group H = CI(Z[,/—p]) is the class group of Endy,(Ex)
for (every) E4 € S.

» What is the action?
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Towards IP1: Group action
» Let ! C Endg,(E4) be an ideal.
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Towards IP1: Group action

» Let ! C Endg,(E4) be an ideal.
» Then
H; = m ker(a)

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fi:E— E/H]
to be the isogeny from E with kernel Hj.

» For [I] € CI(Z[,/=p)]), let I be an integral representative of
the ideal class [I]. Then

ClZ[/=p]) xS — S
(1], E) = fu,(E)

is a free, transitive group action!
21/35



IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x* + Ax? + x with p = 3 (mod 8)
and p > 5.
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is a free, transitive group action.
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IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x* + Ax? + x with p = 3 (mod 8)
and p > 5.

» The map

CUHZ[\/=p]) xS — S
(1, E) — fr;(E)
is a free, transitive group action.
» Edges are the isogenies fp. (together with their duals).

~+ there is a choice of ¢1, ..., ¢, such that G, U--- UGy, is a
composition of compatible cycles (IP1).
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

23/35
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IP2: Compute neighbours in given directions.

» Our group action was:

ClzZly=p)) x S — s
([1]715) = fHI(E) =
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=) xS — 5
([1]715) = ij(E) = [I] *E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if

1 = [t £ 1))
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=P]) x S — S
(1, E) — fu(E) =: [[| * E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if

I = [(¢,m £ 1)].

» Choosing the direction in the graph corresponds to
choosing this sign.
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Towards IP2: Computing the neighbours
To compute a neighbour of E, we have to compute an (-isogeny

from a given elliptic curve. To do this:
» Find a point P of order / on E.
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» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/F, be supersingular and p > 5.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an (-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu’s formulas (implemented in Sage).

» Let E/FF, be supersingular and p > 5. Then E(FF,) = C, 1 or
C2 X Cip41)/2-

» Suppose we have found P = E(FF,) of order p + 1 or
(r+1))/2.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an (-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

Let E/F, be supersingular and p > 5. Then E(F),) = Cp;1 or
C2 X Cpsny/2-

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime ¢|(p + 1), the point #P is a point of
order /.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an (-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas (implemented in Sage).

Let E/F, be supersingular and p > 5. Then E(F),) = Cp;1 or
C2 X Cpsny/2-

Suppose we have found P = E(FF,) of order p + 1 or

(p+1))/2.

For every odd prime /|(p + 1), the point #P is a point of
order /.

Given a [F-rational point of order /, the isogeny
computations can be done over .
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To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the (-torsion with P € F,,.
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IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):

>

v

v

v

v

Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

Find a basis {P, Q} of the /-torsion with P € F,,.

1 € Z/lZ is an eigenvalue of Frobenius on the /-torsion; the
action [(¢,  — 1)] x E gives an /-isogeny in the "+ direction.
The other eigenvalue of Frobenius is p/\ € Z/{Z.

If p = —1 (mod /) then the action [(/, 7 + 1)] * E gives an
¢-isogeny in the "—’ direction.
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IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?

You still need a little more to get computations for both the 4+ and —

directions to be over F,
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IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F,, in its /-isogeny graph G, for odd /|(p + 1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion

» p =23 (mod 8),s0 Gy, is a cycle (we have our group action)
» p=—1 (mod ¢;), so {;-isogenies come from action of
[<€1‘, T+ 1>]
Given the group action as above, Vélu's formulas give actual
isogenies!

With our design choices all isogeny computations are over F,,. !

You still need a little more to get computations for both the 4+ and —

directions to be over F,
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.

= Can compress every node to a single value A € .

= Tiny keys!
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Does any A work?

2This algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Does any A work?

No.

» About ,/p of all A € F), are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = co.?

2This algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.
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Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(>_ ¢;¢;). An attacker
has to compute one isogeny of large degree

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to E»,
whereas an attacker has compute all the possible paths
from Ej.

» Best classical attacks are (variants of) meet-in-the-middle:

Time O(Y/p).
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Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
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Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

>

Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

Childs-Jao-Soukharev [C]S] applied Kuperberg/Regev to
CRS - their attack also applies to CSIDH.

Part of CJS attack computes many paths in superposition.
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Quantum Security

» The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

3From [BLMP], using query count of [BS]. [BS] also study quantum

evaluation of isogenies but their current preprint misses some costs.
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Quantum Security

>

BLMP

The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:
» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies
(and much more).
Most previous analysis focussed on asymptotics

gives full computer-verified simulation of quantum
evaluation of isogenies. Computes one query (i.e.
CSIDH-512 group action) using 765325228976 = 0.7 - 2%
nonlinear bit operations.

For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 28! qubit
operations.?

3From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

31/35



Work in progress & future work

» Fast and constant-time implementation.

32/35



Work in progress & future work

» Fast and constant-time implementation.

» Hardware implementation.

32/35



Work in progress & future work

» Fast and constant-time implementation.
» Hardware implementation.

» More applications.

32/35



Work in progress & future work

Fast and constant-time implementation.
Hardware implementation.

More applications.

vV v.vY

Exploit more types of isogeny graphs (e.g. of abelian
surfaces).

v

[Your paper here!]
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