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Why care about pairings?

I Building block of privacy protocols
I Allows for anonymous authentication.

How?

Image: Identity-based encryption; stolen shamelessly from Wikipedia
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What is a pairing?

Pairings are maps of groups.

I A group G comes with a group operation ∗.
I eg. G = Z/pZ− {0}with ∗ given by multiplication.

I If g ∈ G and n ∈ Z≥0, write gn = g ∗ · · · ∗ g︸ ︷︷ ︸
n times

.

I eg. (3 (mod 5))2 = 3 · 3 (mod 5).
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What is a pairing?

Pairings are bilinear maps of groups.

In particular:

G1 ×G2 → G3

(g, h) 7→ P(g, h)

(ga, hb) 7→ P(g, h)ab

Why is this useful?
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Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

Use a pairing P : G1 ×G2 → G3

Private Key Generator

Alice’s secret identity id-a ∈ G1; Public pub ∈ G2;
Master secret key sk-m ∈ Z; Master public key pk-m = pubsk-m ∈ G2.

Computes sk-b = id-ask-m...
Sends sk-b to Bob

Alice

Secret identity id-a ∈ G1

Choose random r ∈ Z...
Compute enc-id-a = P(id-a, pk-m)...

Sends (pubr, enc-id-ar) to Bob

Bob

Receives secret key sk-b ∈ G1 from PKG
Receives (pubr, enc-id-ar) from Alice

Compute ver = P(sk-b, pubr)

Verify that ver = enc-id-ar †

† Bilinearity:

P(sk-b, pubr) = P(id-ask-m, pubr) = P(id-a, pub)sk-m·r = P(id-a, pubsk-m)r = P(id-a, pk-m)r.
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What is a cryptographic pairing?

For this protocol idea to be useful, we need:

I Fast exponentiation in G1, G2, and G3. Examples:
I Unit groups of finite fields (square-and-multiply).
I Elliptic curve groups (double-and-add).

I Hard discrete logarithms problems in G1, G2, and G3.
I Bilinearity of P complexity of DLP in each of G1, G2, and

G3 is the fastest algorithm for solving DLP in any of G1, G2,
or G3.

I An explicit pairing formula.
I Example: the Weil pairing with G1 and G2 as elliptic curve

groups and G3 as a finite field group.
I Fast pairing computation.

I Instances of the Weil pairing can be efficiently computed
with Miller’s algorithm.
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How hard is the discrete logarithm problem?

g ∈ G (any):
g ∗ · · · ∗ g︸ ︷︷ ︸

n times
DLP solver n

Complexity: depends on G

g ∈ F∗
pk :

g ∗ · · · ∗ g︸ ︷︷ ︸
n times

Index calculus+ n

Complexity:
if p large, non-special, and k small, Lpk(1/2, c)

for most pairing instances, p is special, giving Lpk(1/3, c)

g ∈ E(Fpk):
g ∗ · · · ∗ g︸ ︷︷ ︸

n times
Pollard-ρ n

Complexity:
if p large, non-special, and k small, for most E,

O(
√

r), where r is the largest prime dividing #E(Fpk)
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Balancing pairings for efficiency

Main idea: construct examples of pairings G1×G2 → G3 where
the complexity of DLP is about the same in each group.

I 128-bit security: 2 favourite choices (called BN and BLS)
with complexity DLP in G1 ≈ complexity of DLP in G3.

I Most common choice implemented in practise: BN
I Balancing all three groups impractical.

For these two choices:
I Complexity of DLP in G1 is O(2128).
I Complexity of DLP in G3 is O(2103) (BN) and O(2126) (BLS)

respectively.
I . . . wait what?
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Rebalancing pairings for efficiency

Main idea: construct examples of pairings G1×G2 → G3 where
the complexity of DLP is about the same in each group.

I 2016: new improvements/refinements to the attack
methods. See eg. [BD17] for an overview.

I Worst-case asymptotic complexity went from
Lpk [1/3, 1.923] to Lpk [1/3, 1.526].

I With new understanding, different parameters will rule
them all.
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Rebalancing pairings for efficiency
3 concrete approaches so far:

I Just increase the parameters for BN and BLS until they are
secure [BD16].

I Guillevic, Masson, and Thomé [GMT19]:
I Construct pairings with a different method, where attacks

don’t apply (Cocks-Pinch).
I Pro: safe against further improvements to known attack

methods.
I Con: not as fast (less choices for parameters).

I Fotiadis and me [FM19]:
I Take many families constructed with previous favourite

method (Brezing-Weng).
I Search for the family for which the attack is least effective.
I Find a family member for which the attack has no effect.
I Pros: Most efficient results, can use pre-attack optimization

tricks.
I Con: If new improvements to known attacks are found,A.
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More candidates

There are many more choices!

Barbulescu, El Mrabet, and Ghammam [BEG19] recently
computed a large database of choices for G1, G2, and G3 with
the new security requirements in mind.
Why is this not a ‘concrete approach’?

I Concrete security level not yet calculated.
I Concrete timings not yet integrated.
I May be a faster candidate, but currently unknown!
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So where are we at?
The computation of a pairing like those above can be boiled
down to multiplications in Fp, where G3 = F∗pk .
m = one Fp-multiplication.

Pairing choice log(p) Pairing cost Clock cycles
BN 462 17871m 2966586

k = 6 [GMT] 672 8472m 2660208
KSS 339 25926m 2566674

k = 8 [GMT] 544 11636m 2443560
BLS 461 13878m 2303748

Family 17a [FM] 398 16189m 2088381
Family 17b [FM] 407 16172m 2086188

Table: Choices for 128-bit security

The number of clock cycles is based on a generic Montgomery-schoolbook algorithm for

multiplication mod p on a 64-bit processor.
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So where are we at?

I The fastest 128-bit-secure example so far is about ×2 as
slow as the fastest (now non-secure) example that was
previously being used in practise (BN).

I Further optimizations can improve the situation:
I Optimization of finite field multiplication for the specific

modulus
I High-level parallelization for eg. Cortex M4 chips
I Hardware optimizations
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Thank you!
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