Are pairings really dead? 思

Chloe Martindale

Technische Universiteit Eindhoven
Ei/ Ψ seminar, 17th June 2019

Why care about pairings?

- Building block of privacy protocols
- Allows for anonymous authentication.

Why care about pairings?

- Building block of privacy protocols
- Allows for anonymous authentication.

Image: Identity-based encryption; stolen shamelessly from Wikipedia

Why care about pairings?

- Building block of privacy protocols
- Allows for anonymous authentication. How?

Image: Identity-based encryption; stolen shamelessly from Wikipedia

What is a pairing?

Pairings are maps of groups.

What is a pairing?

Pairings are maps of groups.

- A group \mathbb{G} comes with a group operation $*$.

What is a pairing?

Pairings are maps of groups.

- A group \mathbb{G} comes with a group operation $*$.
- eg. $\mathbb{G}=\mathbb{Z} / p \mathbb{Z}-\{0\}$ with $*$ given by multiplication.

What is a pairing?

Pairings are maps of groups.

- A group \mathbb{G} comes with a group operation $*$.
- eg. $\mathbb{G}=\mathbb{Z} / p \mathbb{Z}-\{0\}$ with $*$ given by multiplication.
- If $g \in \mathbb{G}$ and $n \in \mathbb{Z}_{\geq 0}$, write $g^{n}=\underbrace{g * \cdots * g}_{n \text { times }}$.

What is a pairing?

Pairings are maps of groups.

- A group \mathbb{G} comes with a group operation $*$.
- eg. $\mathbb{G}=\mathbb{Z} / p \mathbb{Z}-\{0\}$ with $*$ given by multiplication.
- If $g \in \mathbb{G}$ and $n \in \mathbb{Z}_{\geq 0}$, write $g^{n}=\underbrace{g * \cdots * g}_{n \text { times }}$.
- eg. $(3(\bmod 5))^{2}=3 \cdot 3(\bmod 5)$.

What is a pairing?

Pairings are bilinear maps of groups.

What is a pairing?

Pairings are bilinear maps of groups. In particular:

$$
\begin{array}{rlc}
\mathbb{G}_{1} \times \mathbb{G}_{2} & \rightarrow & \mathbb{G}_{3} \\
(g, h) & \mapsto & P(g, h)
\end{array}
$$

What is a pairing?

Pairings are bilinear maps of groups. In particular:

$$
\begin{array}{rlc}
\mathbb{G}_{1} \times \mathbb{G}_{2} & \rightarrow & \mathbb{G}_{3} \\
(g, h) & \mapsto & P(g, h) \\
\left(g^{a}, h^{b}\right) & \mapsto & P(g, h)^{a b}
\end{array}
$$

What is a pairing?

Pairings are bilinear maps of groups. In particular:

$$
\begin{array}{rlc}
\mathbb{G}_{1} \times \mathbb{G}_{2} & \rightarrow & \mathbb{G}_{3} \\
(g, h) & \mapsto & P(g, h) \\
\left(g^{a}, h^{b}\right) & \mapsto & P(g, h)^{a b}
\end{array}
$$

Why is this useful?

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

Private Key Generator

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.
Use a pairing $P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$
Private Key Generator
Alice's secret identity id-a $\in \mathbb{G}_{1} ;$ Public pub $\in \mathbb{G}_{2} ;$
Master secret key sk-m $\in \mathbb{Z} ;$ Master public key pk-m $=$ pub $^{\text {sk-m }} \in \mathbb{G}_{2}$.
Computes sk-b $=$ id-a ${ }^{\text {sk-m } \ldots}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator
Alice's secret identity id-a $\in \mathbb{G}_{1} ;$ Public pub $\in \mathbb{G}_{2} ;$
Master secret key sk-m $\in \mathbb{Z} ;$ Master public key pk-m $=$ pubskem $_{\text {sk }} \in \mathbb{G}_{2}$.
Computes sk-b $=$ id-a ${ }^{\text {sk-m }} \ldots$
Sends sk-b to Bob

Bob

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator
Alice's secret identity id-a $\in \mathbb{G}_{1} ;$ Public pub $\in \mathbb{G}_{2} ;$
Master secret key sk-m $\in \mathbb{Z} ;$ Master public key pk-m $=$ pub $^{\text {sk-m }} \in \mathbb{G}_{2}$.
Computes sk-b $=$ id-a ${ }^{\text {sk-m }} \ldots$
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P($ id-a, pk-m)...
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_{1}$; Public pub $\in \mathbb{G}_{2}$;
Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m $=$ pubsk-m $\in \mathbb{G}_{2}$.
Computes sk-b $=i d-a^{\text {sk-m }} \ldots$
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P(\mathrm{id}-\mathrm{a}, \mathrm{pk}-\mathrm{m}) . .$.
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice
Compute ver $=P\left(\right.$ sk-b, pub $\left.{ }^{r}\right)$
Verify that ver $=$ enc-id-a ${ }^{r}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_{1}$; Public pub $\in \mathbb{G}_{2}$;
Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m $=$ pubsk-m $\in \mathbb{G}_{2}$.
Computes sk-b $=i d-a^{\text {sk-m }} \ldots$
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P($ id-a, pk-m)...
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice
Compute ver $=P\left(\right.$ sk-b, pub $\left.^{r}\right)$
Verify that ver $=$ enc-id- $a^{r} \dagger$
\dagger Bilinearity:
$P\left(\right.$ sk-b, pub $\left.{ }^{r}\right)=P\left(\right.$ id $^{\text {ask-m }}$, pub $\left.^{r}\right)$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_{1}$; Public pub $\in \mathbb{G}_{2}$;
Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m $=$ pubsk-m $\in \mathbb{G}_{2}$.
Computes sk-b $=i d-a^{\text {sk-m }} . .$.
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P($ id-a, pk-m)...
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice
Compute ver $=P\left(\right.$ sk-b, pub $\left.^{r}\right)$
Verify that ver $=$ enc-id- $a^{r} \dagger$
\dagger Bilinearity:
$P\left(\right.$ sk- $\left.\mathrm{b}, \mathrm{pub}^{r}\right)=P\left(\mathrm{id}-\mathrm{a}^{\text {sk }-\mathrm{m}}\right.$, pub $\left.^{r}\right)=P(\mathrm{id}-\mathrm{a}, \mathrm{pub})^{\text {sk-m} \cdot r}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_{1}$; Public pub $\in \mathbb{G}_{2}$;
Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m $=$ pubsk-m $\in \mathbb{G}_{2}$.
Computes sk-b $=i d-a^{\text {sk-m }} . .$.
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P($ id-a, pk-m)...
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice
Compute ver $=P\left(\right.$ sk-b, pub $\left.^{r}\right)$
Verify that ver $=$ enc-id- $a^{r} \dagger$
\dagger Bilinearity:
$P\left(\mathrm{sk}-\mathrm{b}, \mathrm{pub}^{r}\right)=P\left(\mathrm{id}-\mathrm{a}^{\mathrm{sk}-\mathrm{m}}\right.$, pub $\left.^{r}\right)=P(\mathrm{id}-\mathrm{a}, \mathrm{pub})^{\mathrm{sk}-m \cdot r}=P\left(\mathrm{id}-\mathrm{a}, \mathrm{pub}^{\mathrm{sk}-\mathrm{m}}\right)^{r}$

Pairings in (simplified) IBE (Boneh-Franklin)

Scenario: Bob authenticates an anonymous Alice.

$$
\text { Use a pairing } P: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_{1}$; Public pub $\in \mathbb{G}_{2}$;
Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m $=$ pubsk-m $\in \mathbb{G}_{2}$.
Computes sk-b $=i d-a^{\text {sk-m }} . .$.
Sends sk-b to Bob

Alice

Secret identity id-a $\in \mathbb{G}_{1}$
Choose random $r \in \mathbb{Z}$...
Compute enc-id-a $=P($ id-a, pk-m)...
Sends (pub ${ }^{r}$, enc-id- a^{r}) to Bob

Bob
Receives secret key sk-b $\in \mathbb{G}_{1}$ from PKG
Receives (pub ${ }^{r}$, enc-id-a ${ }^{r}$) from Alice
Compute ver $=P\left(\right.$ sk-b, pub $\left.^{r}\right)$
Verify that ver $=$ enc-id- $a^{r} \dagger$
\dagger Bilinearity:
$P\left(\right.$ sk-b, pub $\left.{ }^{r}\right)=P\left(\mathrm{id}^{\text {ask }}{ }^{\text {s-m }}\right.$, pub $\left.^{r}\right)=P(\mathrm{id}-\mathrm{a}, \mathrm{pub})^{\text {sk-m} \cdot r}=P\left(\mathrm{id}-\mathrm{a}, \mathrm{pub}^{\text {sk-m }}\right)^{r}=P(\mathrm{id}-\mathrm{a}, \mathrm{pk}-\mathrm{m})^{r}$.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.
- Bilinearity of $P \rightsquigarrow$ complexity of DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} is the fastest algorithm for solving DLP in any of $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{3}.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.
- Bilinearity of $P \rightsquigarrow$ complexity of DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} is the fastest algorithm for solving DLP in any of $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{3}.
- An explicit pairing formula.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.
- Bilinearity of $P \rightsquigarrow$ complexity of DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} is the fastest algorithm for solving DLP in any of $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{3}.
- An explicit pairing formula.
- Example: the Weil pairing with \mathbb{G}_{1} and \mathbb{G}_{2} as elliptic curve groups and \mathbb{G}_{3} as a finite field group.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.
- Bilinearity of $P \rightsquigarrow$ complexity of DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} is the fastest algorithm for solving DLP in any of $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{3}.
- An explicit pairing formula.
- Example: the Weil pairing with \mathbb{G}_{1} and \mathbb{G}_{2} as elliptic curve groups and \mathbb{G}_{3} as a finite field group.
- Fast pairing computation.

What is a cryptographic pairing?

For this protocol idea to be useful, we need:

- Fast exponentiation in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}. Examples:
- Unit groups of finite fields (square-and-multiply).
- Elliptic curve groups (double-and-add).
- Hard discrete logarithms problems in $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3}.
- Bilinearity of $P \rightsquigarrow$ complexity of DLP in each of $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} is the fastest algorithm for solving DLP in any of $\mathbb{G}_{1}, \mathbb{G}_{2}$, or \mathbb{G}_{3}.
- An explicit pairing formula.
- Example: the Weil pairing with \mathbb{G}_{1} and \mathbb{G}_{2} as elliptic curve groups and \mathbb{G}_{3} as a finite field group.
- Fast pairing computation.
- Instances of the Weil pairing can be efficiently computed with Miller's algorithm.

How hard is the discrete logarithm problem?

$$
g \in \mathbb{G}(\text { any }): \quad \underbrace{g * \cdots * g}_{n \text { times }} \longrightarrow D \text { DLP SOlver } \longrightarrow n
$$

How hard is the discrete logarithm problem?

$$
g \in \mathbb{G} \text { (any): } \underbrace{g * \cdots * g}_{n \text { times }} \longrightarrow \text { DLP solver } \longrightarrow \underset{\substack{\downarrow \\ \text { Complexity: depends on } \mathbb{G}}}{\longrightarrow} \longrightarrow n
$$

$$
g \in \mathbb{F}_{p^{k}}^{*}: \quad \underbrace{g * \cdots * g}_{n \text { times }} \rightarrow \text { Index calculus }+\longrightarrow \underset{\begin{array}{c}
\downarrow \\
\text { if } p \text { large, non-special, and } k \text { small, } L_{p^{k}}(1 / 2, c) \\
\text { Complexity: } \\
\text { for most pairing instances, } p \text { is special, giving } L_{p^{k}}(1 / 3, c)
\end{array}}{\longrightarrow n}
$$

How hard is the discrete logarithm problem?

$$
\begin{aligned}
& g \in \mathbb{G} \text { (any): } \underbrace{g * \cdots * g}_{n \text { times }} \longrightarrow \text { DLP SOlver } \longrightarrow n \\
& \text { Complexity: depends on } \mathbb{G} \\
& g \in \mathbb{F}_{p_{k}}^{*}: \\
& \underbrace{g * \cdots * g}_{n \text { times }} \rightarrow \text { Index calculus }+\longrightarrow n \\
& \text { if } p \text { large, non-special, and } k \text { small, } L_{p^{k}}(1 / 2, c) \\
& \text { for most pairing instances, } p \text { is special, giving } L_{p^{k}}(1 / 3, c) \\
& \text { Complexity: } \\
& \text { if } p \text { large, non-special, and } k \text { small, for most } E \text {, } \\
& O(\sqrt{r}) \text {, where } r \text { is the largest prime dividing } \# E\left(\mathbb{F}_{p^{k}}\right)
\end{aligned}
$$

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN
- Balancing all three groups impractical.

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN
- Balancing all three groups impractical.

For these two choices:

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN
- Balancing all three groups impractical.

For these two choices:

- Complexity of DLP in \mathbb{G}_{1} is $O\left(2^{128}\right)$.

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN
- Balancing all three groups impractical.

For these two choices:

- Complexity of DLP in \mathbb{G}_{1} is $O\left(2^{128}\right)$.
- Complexity of DLP in \mathbb{G}_{3} is $O\left(2^{103}\right)(\mathrm{BN})$ and $O\left(2^{126}\right)$ (BLS) respectively.

Balancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in $\mathbb{G}_{1} \approx$ complexity of DLP in \mathbb{G}_{3}.
- Most common choice implemented in practise: BN
- Balancing all three groups impractical.

For these two choices:

- Complexity of DLP in \mathbb{G}_{1} is $O\left(2^{128}\right)$.
- Complexity of DLP in \mathbb{G}_{3} is $O\left(2^{103}\right)(\mathrm{BN})$ and $O\left(2^{126}\right)$ (BLS) respectively.
- . . . wait what?

Rebalancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

Rebalancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.

Rebalancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.
- Worst-case asymptotic complexity went from $L_{p^{k}}[1 / 3,1.923]$ to $L_{p^{k}}[1 / 3,1.526]$.

Rebalancing pairings for efficiency

Main idea: construct examples of pairings $\mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ where the complexity of DLP is about the same in each group.

- 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.
- Worst-case asymptotic complexity went from $L_{p^{k}}[1 / 3,1.923]$ to $L_{p^{k}}[1 / 3,1.526]$.
- With new understanding, different parameters will rule them all.

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
- Take many families constructed with previous favourite method (Brezing-Weng).

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
- Take many families constructed with previous favourite method (Brezing-Weng).
- Search for the family for which the attack is least effective.

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
- Take many families constructed with previous favourite method (Brezing-Weng).
- Search for the family for which the attack is least effective.
- Find a family member for which the attack has no effect.

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
- Take many families constructed with previous favourite method (Brezing-Weng).
- Search for the family for which the attack is least effective.
- Find a family member for which the attack has no effect.
- Pros: Most efficient results, can use pre-attack optimization tricks.

Rebalancing pairings for efficiency

3 concrete approaches so far:

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
- Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
- Pro: safe against further improvements to known attack methods.
- Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
- Take many families constructed with previous favourite method (Brezing-Weng).
- Search for the family for which the attack is least effective.
- Find a family member for which the attack has no effect.
- Pros: Most efficient results, can use pre-attack optimization tricks.
- Con: If new improvements to known attacks are found, 复。

More candidates

There are many more choices!

More candidates

There are many more choices!
Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} with the new security requirements in mind.

More candidates

There are many more choices!
Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} with the new security requirements in mind.
Why is this not a 'concrete approach'?

More candidates

There are many more choices!
Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for $\mathbb{G}_{1}, \mathbb{G}_{2}$, and \mathbb{G}_{3} with the new security requirements in mind.
Why is this not a 'concrete approach'?

- Concrete security level not yet calculated.
- Concrete timings not yet integrated.
- May be a faster candidate, but currently unknown!

So where are we at?

The computation of a pairing like those above can be boiled down to multiplications in \mathbb{F}_{p}, where $\mathbb{G}_{3}=\mathbb{F}_{p^{k}}^{*}$. $\mathbf{m}=$ one \mathbb{F}_{p}-multiplication.

So where are we at?

The computation of a pairing like those above can be boiled down to multiplications in \mathbb{F}_{p}, where $\mathbb{G}_{3}=\mathbb{F}_{p^{k}}^{*}$. $\mathbf{m}=$ one \mathbb{F}_{p}-multiplication.

Pairing choice	$\log (p)$	Pairing cost	Clock cycles
BN	462	$17871 \mathbf{m}$	2966586
$k=6$ [GMT]	672	8472 m	2660208
KSS	339	$25926 \mathbf{m}$	2566674
$k=8$ [GMT]	544	11636 m	2443560
BLS	461	$13878 \mathbf{m}$	2303748
Family 17a [FM]	398	16189 m	2088381
Family 17b [FM]	407	16172 m	2086188

Table: Choices for 128-bit security

The number of clock cycles is based on a generic Montgomery-schoolbook algorithm for multiplication $\bmod p$ on a 64-bit processor.

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
- Optimization of finite field multiplication for the specific modulus

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
- Optimization of finite field multiplication for the specific modulus
- High-level parallelization for eg. Cortex M4 chips

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
- Optimization of finite field multiplication for the specific modulus
- High-level parallelization for eg. Cortex M4 chips
- Hardware optimizations

So where are we at?

- The fastest 128 -bit-secure example so far is about $\times 2$ as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
- Optimization of finite field multiplication for the specific modulus
- High-level parallelization for eg. Cortex M4 chips
- Hardware optimizations

Thank you!

References

BD17 Barbulescu and Duquesne: Updating key size estimations for pairings. http://eprint.iacr.org/2017/334.
BEG19 Barbulescu, El Mrabet, and Ghammam: A taxonomy of pairings, their security, their complexity. https://eprint.iacr.org/2019/485.
FM19 Fotiadis and Martindale: Optimal TNFS-secure pairings on elliptic curves with composite embedding degree. https://eprint.iacr.org/2019/555
GMT19 Guillevic, Masson, and Thomé: Cocks-pinch curves of embedding degrees five to eight and optimal ate pairing computation. https://eprint.iacr.org/2019/431.

