Are pairings really dead? 🙎

Chloe Martindale

Technische Universiteit Eindhoven

 Ei/Ψ seminar, 17th June 2019

Why care about pairings?

- Building block of privacy protocols
- Allows for anonymous authentication.

Why care about pairings?

- Building block of privacy protocols
- Allows for anonymous authentication.

Image: Identity-based encryption; stolen shamelessly from Wikipedia

Why care about pairings?

- Building block of privacy protocols
- ► Allows for anonymous authentication. How?

Image: Identity-based encryption; stolen shamelessly from Wikipedia

• A group G comes with a group operation *.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

• If
$$g \in \mathbb{G}$$
 and $n \in \mathbb{Z}_{\geq 0}$, write $g^n = \underbrace{g * \cdots * g}_{n \text{ times}}$.

- A group G comes with a group operation *.
 - eg. $\mathbb{G} = \mathbb{Z}/p\mathbb{Z} \{0\}$ with * given by multiplication.

• If
$$g \in \mathbb{G}$$
 and $n \in \mathbb{Z}_{\geq 0}$, write $g^n = \underbrace{g * \cdots * g}_{n \text{ times}}$.
• eg. $(3 \pmod{5})^2 = 3 \cdot 3 \pmod{5}$.

Pairings are bilinear maps of groups.

Pairings are bilinear maps of groups. In particular:

$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \end{array}$$

Pairings are bilinear maps of groups. In particular:

$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \\ (g^a,h^b) & \mapsto & P(g,h)^{ab} \end{array}$$

Pairings are bilinear maps of groups. In particular:

$$\begin{array}{rcl} \mathbb{G}_1 \times \mathbb{G}_2 & \to & \mathbb{G}_3 \\ (g,h) & \mapsto & P(g,h) \\ (g^a,h^b) & \mapsto & P(g,h)^{ab} \end{array}$$

Why is this useful?

Scenario: Bob authenticates an anonymous Alice.

Alice	Bob

Scenario: Bob authenticates an anonymous Alice.

Use a pairing
$$P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$$

Private Key Generator

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

$$\label{eq:alice's secret identity id-a} \begin{split} & \operatorname{G}_1; \operatorname{Public} pub \in \mathbb{G}_2; \\ & \operatorname{Master secret key } sk-m \in \mathbb{Z}; \\ & \operatorname{Master public key } pk-m = pub^{sk-m} \in \mathbb{G}_2. \end{split}$$

Alice

Secret identity $id-a \in \mathbb{G}_1$

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

 $\begin{array}{l} \mbox{Alice's secret identity id-a} \in \mathbb{G}_1; \mbox{Public pub} \in \mathbb{G}_2;\\ \mbox{Master secret key $k-m} \in \mathbb{Z}; \mbox{Master public key $k-m} = \mbox{pub}^{\mbox{sk-m}} \in \mathbb{G}_2.\\ \mbox{Computes $sk-b} = \mbox{id-a}^{\mbox{sk-m}}.. \end{array}$

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id- $a \in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk- $m \in \mathbb{Z}$; Master public key pk- $m = pub^{sk-m} \in \mathbb{G}_2$. Computes sk- $b = id-a^{sk-m}$... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends $(pub^r, enc-id-a^r)$ to Bob

Bob	

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} $\in \mathbb{G}_2$. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} $\in \mathbb{G}_2$. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends $(pub^r, enc-id-a^r)$ to Bob

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} $\in \mathbb{G}_2$. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

[†] Bilinearity:

 $P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m}},\mathsf{pub}^r)$

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} \in \mathbb{G}_2. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

[†] Bilinearity:

$$P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m}},\mathsf{pub}^r) = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r}$$

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} \in \mathbb{G}_2. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

Bob

Receives secret key sk-b $\in \mathbb{G}_1$ from PKG Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

[†] Bilinearity:

 $P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m}},\mathsf{pub}^r) = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r} = P(\mathsf{id-a},\mathsf{pub}^{\mathsf{sk-m}})^r$

Scenario: Bob authenticates an anonymous Alice.

Use a pairing $P : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$

Private Key Generator

Alice's secret identity id-a $\in \mathbb{G}_1$; Public pub $\in \mathbb{G}_2$; Master secret key sk-m $\in \mathbb{Z}$; Master public key pk-m = pub^{sk-m} \in \mathbb{G}_2. Computes sk-b = id-a^{sk-m}... Sends sk-b to Bob

Alice

Secret identity $id-a \in \mathbb{G}_1$ Choose random $r \in \mathbb{Z}$... Compute enc-id-a = P(id-a, pk-m)... Sends (pub^r, enc-id- a^r) to Bob

[†] Bilinearity:

Receives (pub^r, enc-id-a^r) from Alice Compute ver = $P(sk-b, pub^r)$ Verify that ver = enc-id-a^r [†]

Bob

Receives secret key $sk-b \in \mathbb{G}_1$ from PKG

 $P(\mathsf{sk-b},\mathsf{pub}^r) = P(\mathsf{id-a}^{\mathsf{sk-m}},\mathsf{pub}^r) = P(\mathsf{id-a},\mathsf{pub})^{\mathsf{sk-m}\cdot r} = P(\mathsf{id-a},\mathsf{pub}^{\mathsf{sk-m}})^r = P(\mathsf{id-a},\mathsf{pk-m})^r.$

For this protocol idea to be useful, we need:

▶ Fast exponentiation in G₁, G₂, and G₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - ► Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.
- Fast pairing computation.

- ► Fast exponentiation in G₁, G₂, and G₃. Examples:
 - Unit groups of finite fields (square-and-multiply).
 - Elliptic curve groups (double-and-add).
- ► Hard discrete logarithms problems in 𝔅₁, 𝔅₂, and 𝔅₃.
 - ▶ Bilinearity of *P* → complexity of DLP in each of G₁, G₂, and G₃ is the fastest algorithm for solving DLP in any of G₁, G₂, or G₃.
- An explicit pairing formula.
 - ► Example: the Weil pairing with G₁ and G₂ as elliptic curve groups and G₃ as a finite field group.
- Fast pairing computation.
 - Instances of the Weil pairing can be efficiently computed with Miller's algorithm.

How hard is the discrete logarithm problem?

How hard is the discrete logarithm problem?

How hard is the discrete logarithm problem?

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- Most common choice implemented in practise: BN

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- Most common choice implemented in practise: BN
- ► Balancing all three groups impractical.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- Most common choice implemented in practise: BN
- ► Balancing all three groups impractical.

For these two choices:

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- Most common choice implemented in practise: BN
- ► Balancing all three groups impractical.

For these two choices:

• Complexity of DLP in \mathbb{G}_1 is $O(2^{128})$.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- ► Most common choice implemented in practise: BN
- ► Balancing all three groups impractical.

For these two choices:

- Complexity of DLP in \mathbb{G}_1 is $O(2^{128})$.
- ► Complexity of DLP in G₃ is *O*(2¹⁰³) (BN) and *O*(2¹²⁶) (BLS) respectively.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 128-bit security: 2 favourite choices (called BN and BLS) with complexity DLP in G₁ ≈ complexity of DLP in G₃.
- ► Most common choice implemented in practise: BN
- ► Balancing all three groups impractical.

For these two choices:

- Complexity of DLP in \mathbb{G}_1 is $O(2^{128})$.
- ► Complexity of DLP in G₃ is *O*(2¹⁰³) (BN) and *O*(2¹²⁶) (BLS) respectively.
- ▶ ... wait what?

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

► 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.
- ► Worst-case asymptotic complexity went from $L_{p^k}[1/3, 1.923]$ to $L_{p^k}[1/3, 1.526]$.

Main idea: construct examples of pairings $\mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ where the complexity of DLP is about the same in each group.

- ► 2016: new improvements/refinements to the attack methods. See eg. [BD17] for an overview.
- ► Worst-case asymptotic complexity went from $L_{p^k}[1/3, 1.923]$ to $L_{p^k}[1/3, 1.526]$.
- With new understanding, different parameters will rule them all.

3 concrete approaches so far:

 Just increase the parameters for BN and BLS until they are secure [BD16].

- Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- ► Fotiadis and me [FM19]:
 - Take many families constructed with previous favourite method (Brezing-Weng).

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
 - Take many families constructed with previous favourite method (Brezing-Weng).
 - Search for the family for which the attack is least effective.

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
 - Take many families constructed with previous favourite method (Brezing-Weng).
 - Search for the family for which the attack is least effective.
 - Find a family member for which the attack has no effect.

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
 - Take many families constructed with previous favourite method (Brezing-Weng).
 - Search for the family for which the attack is least effective.
 - Find a family member for which the attack has no effect.
 - Pros: Most efficient results, can use pre-attack optimization tricks.

- ► Just increase the parameters for BN and BLS until they are secure [BD16].
- Guillevic, Masson, and Thomé [GMT19]:
 - Construct pairings with a different method, where attacks don't apply (Cocks-Pinch).
 - Pro: safe against further improvements to known attack methods.
 - Con: not as fast (less choices for parameters).
- Fotiadis and me [FM19]:
 - Take many families constructed with previous favourite method (Brezing-Weng).
 - Search for the family for which the attack is least effective.
 - Find a family member for which the attack has no effect.
 - Pros: Most efficient results, can use pre-attack optimization tricks.
 - ► Con: If new improvements to known attacks are found, 🧸.

More candidates

There are many more choices!

There are many more choices! Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for \mathbb{G}_1 , \mathbb{G}_2 , and \mathbb{G}_3 with the new security requirements in mind. There are many more choices! Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for \mathbb{G}_1 , \mathbb{G}_2 , and \mathbb{G}_3 with the new security requirements in mind. Why is this not a 'concrete approach'? There are many more choices!

Barbulescu, El Mrabet, and Ghammam [BEG19] recently computed a large database of choices for \mathbb{G}_1 , \mathbb{G}_2 , and \mathbb{G}_3 with the new security requirements in mind. Why is this not a 'concrete approach'?

- Concrete security level not yet calculated.
- Concrete timings not yet integrated.
- May be a faster candidate, but currently unknown!

The computation of a pairing like those above can be boiled down to multiplications in \mathbb{F}_p , where $\mathbb{G}_3 = \mathbb{F}_{p^k}^*$. **m** = one \mathbb{F}_p -multiplication.

The computation of a pairing like those above can be boiled down to multiplications in \mathbb{F}_p , where $\mathbb{G}_3 = \mathbb{F}_{p^k}^*$. **m** = one \mathbb{F}_p -multiplication.

Pairing choice	$\log(p)$	Pairing cost	Clock cycles
BN	462	17871 m	2966586
k = 6 [GMT]	672	8472 m	2660208
KSS	339	25926 m	2566674
k = 8 [GMT]	544	11636 m	2443560
BLS	461	13878 m	2303748
Family 17a [FM]	398	16189 m	2088381
Family 17b [FM]	407	16172 m	2086188

Table: Choices for 128-bit security

The number of clock cycles is based on a generic Montgomery-schoolbook algorithm for multiplication mod p on a 64-bit processor.

The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).

- The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:

- The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
 - Optimization of finite field multiplication for the specific modulus

- ► The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
 - Optimization of finite field multiplication for the specific modulus
 - ► High-level parallelization for eg. Cortex M4 chips

- ► The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
 - Optimization of finite field multiplication for the specific modulus
 - ► High-level parallelization for eg. Cortex M4 chips
 - Hardware optimizations

- ► The fastest 128-bit-secure example so far is about ×2 as slow as the fastest (now non-secure) example that was previously being used in practise (BN).
- Further optimizations can improve the situation:
 - Optimization of finite field multiplication for the specific modulus
 - ► High-level parallelization for eg. Cortex M4 chips
 - Hardware optimizations

Thank you!
References

- BD17 Barbulescu and Duquesne: Updating key size estimations for pairings. http://eprint.iacr.org/2017/334.
- BEG19 Barbulescu, El Mrabet, and Ghammam: A taxonomy of pairings, their security, their complexity. https://eprint.iacr.org/2019/485.
- FM19 Fotiadis and Martindale: Optimal TNFS-secure pairings on elliptic curves with composite embedding degree. https://eprint.iacr.org/2019/555
- GMT19 Guillevic, Masson, and Thomé: Cocks-pinch curves of embedding degrees five to eight and optimal ate pairing computation. https://eprint.iacr.org/2019/431.