Isogeny-based cryptography: why, how, and what next?

29th July 2022

Zoo of lattice- and isogeny-based KEMs

Zoo of lattice- and isogeny-based signatures

Applications (non-exhaustive list)

	Lattices	Isogenies
KEM	\checkmark	\checkmark
Signatures	\checkmark	\checkmark
NIKE	(\times)	\checkmark
FHE	\checkmark	\times
IBE	\checkmark	\times
Threshold	\checkmark	\checkmark
OPRF	\checkmark	\checkmark
VDF	(\times)	(\checkmark)
VRF	(\checkmark)	(\checkmark)

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these not enough for crypto!

Stand back!

We're going to do maths.

The beauty and the beast

Components of the isogeny graphs look like this:

The beauty and the beast

Components of the isogeny graphs look like this:

$$
S=\{3,5,7\}, q=419
$$

The beauty and the beast

Components of the isogeny graphs look like this:

$S=\{3,5,7\}, q=419$

$S=\{2,3\}, q=431^{2}$

The beauty and the beast

For key exchange/KEM, there are two families of systems:

CSIDH ['sis;sard]
https://csidh.isogeny.org

$$
q=p^{2}
$$

SIDH

https://sike.org

Isogeny graphs at the CSIDH

Isogeny graphs at the CSIDH

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Isogeny graphs at the CSIDH

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}. Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

- Idea to replace DLP: replace exponentiation

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H that acts via isogenies.
- The action of $h \in H$ on S moves the elliptic curves one step around one of the cycles.

Graphs of elliptic curves

Diffie and Hellman go to the CSIDH

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

Bob
$[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

> Bob
> $[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

Bob
$[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

Bob
$[+,+,-,++]$

Diffie and Hellman go to the CSIDH

> Alice
> $\left[+,-,+,-\frac{-}{\uparrow}\right.$

Bob
$[+,+,-,+\underset{\uparrow}{+}]$

Diffie and Hellman go to the CSIDH

Alice
$[+,-,+,-]$
Bob
$[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

> Bob
> $[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

Bob
$[+,+,-,+]$

Diffie and Hellman go to the CSIDH

> Alice
> $[+,-,+,-]$

> Bob
> $\left[+,+,-\frac{-}{\uparrow},+\right]$

Diffie and Hellman go to the CSIDH

> Alice
> $\left[+,-,+,-\frac{-}{\uparrow}\right.$

Bob

$[+,+,-,+\underset{\uparrow}{+}$

Diffie and Hellman go to the CSIDH

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

Bob
$[+,+,-,+]$

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.
- For every odd prime $\ell \mid(p+1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ-isogeny from E. To do this:

- Find a point P of order ℓ on E.
- Let E / \mathbb{F}_{p} be supersingular and $p \geq 5$. Then $E\left(\mathbb{F}_{p}\right) \cong C_{p+1}$ or $C_{2} \times C_{(p+1) / 2}$.
- Suppose we have found $P=E\left(\mathbb{F}_{p}\right)$ of order $p+1$ or $(p+1) / 2$.
- For every odd prime $\ell \mid(p+1)$, the point $\frac{p+1}{\ell} P$ is a point of order ℓ.
- Compute the isogeny with kernel $\{P, 2 P, \ldots, \ell P\}$ using Vélu's formulas* (implemented in Sage).
- Given a \mathbb{F}_{p}-rational point of order ℓ, the isogeny computations can be done over \mathbb{F}_{p}.

Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_{p}$.

Representing nodes of the graph

- Every node of $G_{\ell_{i}}$ is

$$
E_{A}: y^{2}=x^{3}+A x^{2}+x
$$

\Rightarrow Can compress every node to a single value $A \in \mathbb{F}_{p}$.
\Rightarrow Tiny keys!

Does any A work?

${ }^{1}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.
${ }^{1}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.

- About \sqrt{p} of all $A \in \mathbb{F}_{p}$ are valid keys.
${ }^{1}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Does any A work?

No.

- About \sqrt{p} of all $A \in \mathbb{F}_{p}$ are valid keys.
- Public-key validation: Check that E_{A} has $p+1$ points.

Easy Monte-Carlo algorithm: Pick random P on E_{A} and check $[p+1] P=\infty .{ }^{1}$
${ }^{1}$ This algorithm has a small chance of false positives, but we actually use a variant that proves that E_{A} has $p+1$ points.

Quantum Security

Original proposal in 2018 paper: $\mathbb{F}_{p} \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).

Quantum Security

Original proposal in 2018 paper: $\mathbb{F}_{p} \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

Quantum Security

Original proposal in 2018 paper: $\mathbb{F}_{p} \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2^{16} queries using 2^{40} bits of quantum accessible classical memory.

Quantum Security

Original proposal in 2018 paper: $\mathbb{F}_{p} \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2^{16} queries using 2^{40} bits of quantum accessible classical memory.
- For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2^{56} qubit operations.

Quantum Security

Original proposal in 2018 paper: $\mathbb{F}_{p} \approx 512$ bits.

- The exact cost of the Kuperberg/Regev/CJS attack is subtle - it depends on:
- Choice of time/memory trade-off (Regev/Kuperberg)
- Quantum evaluation of isogenies (and much more).
- [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2^{16} queries using 2^{40} bits of quantum accessible classical memory.
- For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2^{56} qubit operations.
- Overheads from error correction, high quantum memory etc., not yet understood.

Venturing beyond the CSIDH

A selection of advances since original publication (2018):

- CSURF [CD19]: exploiting 2-isogenies.
- sqrtVelu [BDLS20]: square-root speed-up on computation of large-degree isogenies.
- Radical isogenies [CDV20]: significant speed-up on isogenies of small-ish degree.
- Some work on different curve forms (e.g. Edwards, Huff).
- Knowledge of $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{A}\right)$ breaks CSIDH in classical polynomial time [Wes21].
- The SQALE of CSIDH [CCJR22]: carefully constructed CSIDH parameters less susceptible to Kuperberg's algorithm.
- CTIDH [$\left.B^{2} C^{2} \mathrm{LMS}^{2}\right]$: Efficient constant-time CSIDH-style construction.

Now: SIDH

Supersingular Isogeny Diffie-Hellman

Diffie-Hellman: High-level view

SIDH: High-level view

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)

SIDH: High-level view

- Alice \& Bob pick secret subgroups A and B of E.
- Alice computes $\varphi_{A}: E \rightarrow E / A$; Bob computes $\varphi_{B}: E \rightarrow E / B$.
- Alice and Bob transmit the values E / A and E / B.
- Alice somehow obtains $A^{\prime}:=\varphi_{B}(A)$. (Similar for Bob.)
- They both compute the shared secret

$$
(E / B) / A^{\prime} \cong E /\langle A, B\rangle \cong(E / A) / B^{\prime}
$$

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.
Solution: φ_{B} is a group homomorphism!

SIDH's auxiliary points

Previous slide: "Alice somehow obtains $A^{\prime}:=\varphi_{B}(A) . "$
Alice knows only A, Bob knows only φ_{B}. Hm.
Solution: φ_{B} is a group homomorphism!

- Alice picks A as $\langle P+[a] Q\rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_{B}(P)$ and $\varphi_{B}(Q)$ in his public key.
\Longrightarrow Now Alice can compute A^{\prime} as $\left\langle\varphi_{B}(P)+[a] \varphi_{B}(Q)\right\rangle$!

SIDH in one slide

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

Break it by: given public info, find secret key $-\varphi_{A}$ or just A.

Security

Hard Problem:

Given

- supersingular public elliptic curves $E_{0} / \mathbb{F}_{p^{2}}$ and $E_{A} / \mathbb{F}_{p^{2}}$ connected by a secret 2^{n}-degree isogeny $\varphi_{A}: E_{0} \rightarrow E_{A}$, and
- the action of φ_{A} on the 3^{m}-torsion of E_{0}, find the secret key recover φ_{A}.

Security

Hard Problem:

Given

- supersingular public elliptic curves $E_{0} / \mathbb{F}_{p^{2}}$ and $E_{A} / \mathbb{F}_{p^{2}}$ connected by a secret 2^{n}-degree isogeny $\varphi_{A}: E_{0} \rightarrow E_{A}$, and
- the action of φ_{A} on the 3^{m}-torsion of E_{0}, find the secret key recover φ_{A}.
- Knowledge of $\operatorname{End}\left(E_{0}\right)$ and $\operatorname{End}\left(E_{A}\right)$ is sufficient to efficiently break it.
- Active attacker can recover secret.
- In SIDH, $\operatorname{End}\left(E_{0}\right)$ is fixed and $3^{m} \approx 2^{n} \approx \sqrt{p}$.
- If $3^{m}>2^{n}$ or $3^{m}, 2^{n}>\sqrt{p}$, security claims are weakened.

Security of SIKE

- Best known attacks on SIKE, where $E_{0} / \mathbb{F}_{p}: y^{2}=x^{3}+x$ and $2^{n} \approx 3^{m}$ are on the Isogeny Problem:

Security of SIKE

- Best known attacks on SIKE, where $E_{0} / \mathbb{F}_{p}: y^{2}=x^{3}+x$ and $2^{n} \approx 3^{m}$ are on the Isogeny Problem:
- The isogeny problem: given two elliptic curves, find an isogeny between them.

Security of SIKE

- Best known attacks on SIKE, where $E_{0} / \mathbb{F}_{p}: y^{2}=x^{3}+x$ and $2^{n} \approx 3^{m}$ are on the Isogeny Problem:
- The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O\left(p^{1 / 4}\right)$.

Security of SIKE

- Best known attacks on SIKE, where $E_{0} / \mathbb{F}_{p}: y^{2}=x^{3}+x$ and $2^{n} \approx 3^{m}$ are on the Isogeny Problem:
- The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O\left(p^{1 / 4}\right)$.
- Best quantum attack: meet-in-the-middle + Grover $O\left(p^{1 / 4}\right)$, but slightly better in practise.

Security of SIKE

- Best known attacks on SIKE, where $E_{0} / \mathbb{F}_{p}: y^{2}=x^{3}+x$ and $2^{n} \approx 3^{m}$ are on the Isogeny Problem:
- The isogeny problem: given two elliptic curves, find an isogeny between them.
- Best classical attack: meet-in-the-middle $O\left(p^{1 / 4}\right)$.
- Best quantum attack: meet-in-the-middle + Grover $O\left(p^{1 / 4}\right)$, but slightly better in practise.
- No commutative group action to exploit here*

What about signatures?

CSI-FiSh (S ‘06, D-G '18, Beullens-Kleinjung-Vercauteren '19)

Identification scheme from $H \times S \rightarrow S$:
Prover
Public

$$
E \in S, \mathfrak{l}_{i} \in H
$$

$s_{i} \leftarrow \$ \mathbb{Z}$
$\mathrm{sk}=\prod \mathfrak{l}_{i}^{s_{i}}$,
$\mathrm{pk}=\mathrm{sk} * E \xrightarrow{\mathrm{pk}} \mathrm{pk}$
$c \leftarrow \$\{0,1\}$
$t_{i} \leftarrow \$ \mathbb{Z}$
esk $=\prod \mathfrak{r}_{i}^{t_{i}}$,
$\mathrm{epk}_{1}=$ esk $* E$,
$\mathrm{epk}_{2}=\mathrm{esk} \cdot \mathrm{sk}^{-c} \quad \mathrm{pk}, \mathrm{epk}_{1}$, epk $_{2}$
check:

$$
\mathrm{epk}_{1}=\mathrm{epk}_{2} *\left(\left[\mathrm{sk}^{c}\right] * E\right)
$$

After k challenges c, an imposter succeeds with prob 2^{-k}.

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski '20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find $\mathfrak{a} \in H$ such that

$$
\mathfrak{a} * E=E^{\prime} .
$$

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny $E \rightarrow E^{\prime}$
(* rational map + group homomorphism)

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski '20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny $E \rightarrow E^{\prime}$
(* rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski '20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

$$
\left.\right|_{E_{\mathrm{pk}}} ^{E}
$$

public, secret, ephemeral secret, public challenge, public proof

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

Summary and overview

- SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.

Summary and overview

- SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.

Summary and overview

- SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, slow, known quantum attack reduces security below NIST Level I, hard to scale up.

Summary and overview

- SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, slow, known quantum attack reduces security below NIST Level I, hard to scale up.
- SQISign '20 Digital signature. Small, slow, clean security assumption, no known attack avenues.

Thank you!

References

$\left[\mathrm{B}^{2} \mathrm{C}^{2} \mathrm{LMS}^{2}\right]$	ctidh.isogeny.org
$[$ BD17]	ia.cr/2017/334
[BDLS20]	velusqrt.isogeny.org
[BEG19]	ia.cr/2019/485
[BLMP19]	quantum.isogeny.org
[CCJR22]	ia.cr/2020/1520
[CD19]	ia.cr/2019/1404
[CDV20]	ia.cr/2020/1108
[FM19]	ia.cr/2019/555
[GMT19]	ia.cr/2019/431
[Wes21]	ia.cr/2021/1583

