Isogeny-based cryptography: why, how, and what next?

29th July 2022

Zoo of lattice- and isogeny-based KEMs

Zoo of lattice- and isogeny-based signatures

Applications (non-exhaustive list)

	Lattices	Isogenies
KEM	✓	✓
Signatures	✓	✓
NIKE	(×)	✓
FHE	✓	×
IBE	√	×
Threshold	✓	✓
OPRF	✓	✓
VDF	(×)	(√)
VRF	(√)	(√)

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

► <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture *A*

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- ► Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

Big picture *A*

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- ► We can walk efficiently on these graphs.
- ► Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- ► Enough structure to navigate the graph meaningfully.

 That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do maths.

Components of the isogeny graphs look like this:

Components of the isogeny graphs look like this:

$$S = \{3, 5, 7\}, q = 419$$

Components of the isogeny graphs look like this:

For key exchange/KEM, there are <u>two families</u> of systems:

Isogeny graphs at the CSIDH

Isogeny graphs at the CSIDH

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Isogeny graphs at the CSIDH

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

► Idea to replace DLP: replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace *G* by the set *S* of supersingular elliptic curves $E_A: y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .
- ▶ Replace \mathbb{Z} by a commutative group H that acts via isogenies.
- ▶ The action of $h \in H$ on S moves the elliptic curves one step around one of the cycles.

Graphs of elliptic curves

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

▶ Find a point P of order ℓ on E.

► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

Compute neighbours in the graph

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

- ▶ Find a point P of order ℓ on E.
 - ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$.

► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

- ▶ Find a point P of order ℓ on E.
 - ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.

► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

- ▶ Find a point P of order ℓ on E.
 - ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.

► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

- ▶ Find a point P of order ℓ on E.
 - ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).

To compute a neighbour of E, we have to compute an ℓ -isogeny from E. To do this:

- ▶ Find a point P of order ℓ on E.
 - ▶ Let E/\mathbb{F}_p be supersingular and $p \ge 5$. Then $E(\mathbb{F}_p) \cong C_{p+1}$ or $C_2 \times C_{(p+1)/2}$.
 - Suppose we have found $P = E(\mathbb{F}_p)$ of order p + 1 or (p+1)/2.
 - ► For every odd prime $\ell | (p+1)$, the point $\frac{p+1}{\ell}P$ is a point of order ℓ .
- ► Compute the isogeny with kernel $\{P, 2P, \dots, \ell P\}$ using Vélu's formulas* (implemented in Sage).
 - ▶ Given a \mathbb{F}_p -rational point of order ℓ , the isogeny computations can be done over \mathbb{F}_p .

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

 \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.

Representing nodes of the graph

▶ Every node of G_{ℓ_i} is

$$E_A$$
: $y^2 = x^3 + Ax^2 + x$.

- \Rightarrow Can compress every node to a single value $A \in \mathbb{F}_p$.
- ⇒ Tiny keys!

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

No.

- ▶ About \sqrt{p} of all $A \in \mathbb{F}_p$ are valid keys.
- ▶ Public-key validation: Check that E_A has p+1 points. Easy Monte-Carlo algorithm: Pick random P on E_A and check $[p+1]P = \infty$.

¹This algorithm has a small chance of false positives, but we actually use a variant that *proves* that E_A has p + 1 points.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).
- ▶ [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).
- ▶ [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ► Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - Quantum evaluation of isogenies (and much more).
- ▶ [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ► Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.
- ► For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2⁵⁶ qubit operations.

- ► The exact cost of the Kuperberg/Regev/CJS attack is subtle it depends on:
 - ► Choice of time/memory trade-off (Regev/Kuperberg)
 - ► Quantum evaluation of isogenies (and much more).
- ▶ [BLMP19] computes one query (i.e. CSIDH-512 group action) using $765325228976 \approx 0.7 \cdot 2^{40}$ nonlinear bit operations.
- ► Peikert's sieve technique [P19] on fastest variant of Kuperberg requires 2¹⁶ queries using 2⁴⁰ bits of quantum accessible classical memory.
- ► For fastest variant of Kuperberg, total cost of CSIDH-512 attack is at least 2⁵⁶ qubit operations.
- ► Overheads from error correction, high quantum memory etc., not yet understood.

Venturing beyond the CSIDH

A selection of advances since original publication (2018):

- ► CSURF [CD19]: exploiting 2-isogenies.
- ► sqrtVelu [BDLS20]: square-root speed-up on computation of large-degree isogenies.
- ► Radical isogenies [CDV20]: significant speed-up on isogenies of small-ish degree.
- ► Some work on different curve forms (e.g. Edwards, Huff).
- ▶ Knowledge of $End(E_0)$ and $End(E_A)$ breaks CSIDH in classical polynomial time [Wes21].
- ► The SQALE of CSIDH [CCJR22]: carefully constructed CSIDH parameters less susceptible to Kuperberg's algorithm.
- ► CTIDH [B²C²LMS²]: Efficient constant-time CSIDH-style construction.

Now:

SIDH

Supersingular Isogeny Diffie-Hellman

Diffie-Hellman: High-level view

► Alice & Bob pick secret subgroups *A* and *B* of *E*.

- ▶ Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.

- ▶ Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes φ_A : $E \to E/A$; Bob computes φ_B : $E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes φ_A : $E \to E/A$; Bob computes φ_B : $E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.
- ▶ Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)

- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- ▶ Alice computes φ_A : $E \to E/A$; Bob computes φ_B : $E \to E/B$.
- ▶ Alice and Bob transmit the values E/A and E/B.
- ▶ Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'$.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

Solution: φ_B is a group homomorphism!

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

Solution: φ_B is a group homomorphism!

- ▶ Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- ▶ Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ▶ a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Break it by: given public info, find secret key– φ_A or just A.

Security

Hard Problem:

Given

- ▶ supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A : E_0 \to E_A$, and
- ▶ the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

Security

Hard Problem:

Given

- ▶ supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A: E_0 \to E_A$, and
- ▶ the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

- ► Knowledge of $\operatorname{End}(E_0)$ and $\operatorname{End}(E_A)$ is sufficient to efficiently break it.
- ► Active attacker can recover secret.
- ▶ In SIDH, End(E_0) is fixed and $3^m \approx 2^n \approx \sqrt{p}$.
- ▶ If $3^m > 2^n$ or $3^m, 2^n > \sqrt{p}$, security claims are weakened.

▶ Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:

- ▶ Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - ► The isogeny problem: given two elliptic curves, find an isogeny between them.

- ▶ Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - ► The isogeny problem: given two elliptic curves, find an isogeny between them.
- ▶ Best classical attack: meet-in-the-middle $O(p^{1/4})$.

- ▶ Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - ► The isogeny problem: given two elliptic curves, find an isogeny between them.
- ▶ Best classical attack: meet-in-the-middle $O(p^{1/4})$.
- ▶ Best quantum attack: meet-in-the-middle + Grover $O(p^{1/4})$, but slightly better in practise.

- ▶ Best known attacks on SIKE, where $E_0/\mathbb{F}_p : y^2 = x^3 + x$ and $2^n \approx 3^m$ are on the Isogeny Problem:
 - ► The isogeny problem: given two elliptic curves, find an isogeny between them.
- ▶ Best classical attack: meet-in-the-middle $O(p^{1/4})$.
- ▶ Best quantum attack: meet-in-the-middle + Grover $O(p^{1/4})$, but slightly better in practise.
- ► No commutative group action to exploit here*

What about signatures?

CSI-FiSh (S '06, D-G '18, Beullens-Kleinjung-Vercauteren '19)

Identification scheme from $H \times S \rightarrow S$:

```
Prover
                                                        Public
                                                                                                           Verifier
                                                  E \in S, l_i \in H
         s_i \leftarrow \$ \mathbb{Z}
      \mathsf{sk} = \prod \mathfrak{l}_i^{s_i},
      pk = sk * E 
                                             c \leftarrow \$\{0,1\}
                                                                 С
         t_i \leftarrow \$ \mathbb{Z} \prec
     \operatorname{esk} = \prod \mathfrak{l}_i^{t_i},
  epk_1 = esk * E,
epk_2 = esk \cdot sk^{-c}
                                                         pk,epk<sub>1</sub>,epk<sub>2</sub>
                                                                                                         <del>></del> check:
                                                                                         \operatorname{\mathsf{epk}}_1 = \operatorname{\mathsf{epk}}_2 * ([\operatorname{\mathsf{sk}}^c] * E).
```

After *k* challenges *c*, an imposter succeeds with prob 2^{-k} .

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find $\mathfrak{a} \in H$ such that $\mathfrak{a} * E = E'$.

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$

(*rational map + group homomorphism)

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$ (*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$ (*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$ (*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$ (*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves E and $E' \in S$, find an isogeny* $E \to E'$ (*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

➤ SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.

- ► SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- ► CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.

- ► SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- ► CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- ► CSI-FiSh '19 Digital signature. Small-ish, flexible, slow, known quantum attack reduces security below NIST Level I, hard to scale up.

- ► SIKE '11 KEM. Best-studied, in NIST, fast-ish, small, torsion-point attacks most likely attack avenue.
- ► CSIDH '18 Key exchange. Small, many applications (c.f. group actions), slow, known quantum attack needs further study, other attack avenues non-obvious.
- ► CSI-FiSh '19 Digital signature. Small-ish, flexible, slow, known quantum attack reduces security below NIST Level I, hard to scale up.
- ► SQISign '20 Digital signature. Small, slow, clean security assumption, no known attack avenues.

Thank you!

References

$[B^2C^2LMS^2]$	ctidh.isogeny.org
[BD17]	ia.cr/2017/334
[BDLS20]	velusqrt.isogeny.org
[BEG19]	ia.cr/2019/485
[BLMP19]	quantum.isogeny.org
[CCJR22]	ia.cr/2020/1520
[CD19]	ia.cr/2019/1404
[CDV20]	ia.cr/2020/1108
[FM19]	ia.cr/2019/555
[GMT19]	ia.cr/2019/431
[Wes21]	ia.cr/2021/1583