Isogeny-based cryptography:
why, how, and what next?
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Applications (non-exhaustive list)

Lattices Isogenies

KEM v v
Signatures v v
NIKE (%) v
FHE v X
IBE v X
Threshold v v
OPRF v v

VDF (%) (v)

VRF (v) (v)
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Graph walking Diffie-Hellman?
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Graph walking Diffie-Hellman?
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
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Big picture 2

» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

.%

We’re going to do maths.
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The beauty and the beast

Components of the isogeny graphs look like this:
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The beauty and the beast

Components of the isogeny graphs look like this:
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The beauty and the beast

For key exchange/KEM, there are two families of systems:
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Isogeny graphs at the CSIDH
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Isogeny graphs at the CSIDH
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Isogeny graphs at the CSIDH
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Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.

Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

» Idea to replace DLP: replace exponentiation

ZxG — G
(x,8) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Ep:y? = x> + Ax? + x over Fyo.

» Replace Z by a commutative group H that acts via
isogenies.

» The action of h € H on S moves the elliptic curves one step
around one of the cycles.
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Graphs of elliptic curves
A 3-isogeny
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:

» Find a point P of order £ on E.

» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu’s formulas* (implemented in Sage).
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Compute neighbours in the graph

To compute a neighbour of E, we have to compute an /-isogeny
from E. To do this:
» Find a point P of order / on E.
» Let E/F, be supersingular and p > 5. Then E(FF,) = Cp4; or
C2 X C(p+1)/2.
» Suppose we have found P = E(FF;,) of order p + 1 or
(r+1)/2.
» For every odd prime /|(p + 1), the point #P is a point of
order /.
» Compute the isogeny with kernel {P, 2P, ..., (P} using
Vélu's formulas* (implemented in Sage).
» Given a IF,-rational point of order /, the isogeny
computations can be done over F,.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.
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Representing nodes of the graph

» Every node of Gy, is

Eag: y2:x3+Ax2+x.

= Can compress every node to a single value A € .

= Tiny keys!
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Does any A work?

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
15/28



Does any A work?

No.

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
15/28



Does any A work?

No.

» About ,/p of all A € F, are valid keys.

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
15/28



Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E,4 and check [p + 1]P = co.!

IThis algorithm has a small chance of false positives, but we actually use a

variant that proves that E4 has p + 1 points.
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Quantum Security
Original proposal in 2018 paper: [, ~ 512 bits.
» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
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» The exact cost of the Kuperberg/Regev /C]JS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).
» [BLMP19] computes one query (i.e. CSIDH-512 group

action) using 765325228976 = 0.7 - 240 nonlinear bit
operations.

» Peikert’s sieve technique [P19] on fastest variant of
Kuperberg requires 2'¢ queries using 2*° bits of quantum
accessible classical memory.

» For fastest variant of Kuperberg, total cost of CSIDH-512
attack is at least 2°° qubit operations.

» Overheads from error correction, high quantum memory
etc., not yet understood.
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Venturing beyond the CSIDH

A selection of advances since original publication (2018):

>

>

CSURF [CD19]: exploiting 2-isogenies.
sqrtVelu [BDLS20]: square-root speed-up on computation
of large-degree isogenies.

Radical isogenies [CDV20]: significant speed-up on
isogenies of small-ish degree.

Some work on different curve forms (e.g. Edwards, Huff).

Knowledge of End(Ep) and End(E,4) breaks CSIDH in
classical polynomial time [Wes21].

The SQALE of CSIDH [CCJR22]: carefully constructed
CSIDH parameters less susceptible to Kuperberg’s
algorithm.

CTIDH [B?C?LMS?]: Efficient constant-time CSIDH-style
construction.
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Now:

SIDH

Supersingular Isogeny Diffie-Hellman

18 /28



Diffie-Hellman: High-level view

|

gb ga*b

19/28



SIDH: High-level view

E o sy EJA

E/B ——— E/{A,B)

19/28



SIDH: High-level view

E o E/A
B ®p!
E/B ———— E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.

19/28



SIDH: High-level view

E o E/A
B ®p!
E/B ———— E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.
» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.

19/28



SIDH: High-level view

E o E/A
B ®p!
E/B ———— E/(A,B)

» Alice & Bob pick secret subgroups A and B of E.
» Alice computes p4: E — E/A; Bob computes ¢p: E — E/B.
» Alice and Bob transmit the values E/A and E/B.

19/28



SIDH: High-level view

E o E/A
¥B ®p!
E/B ———— E/(A,B)

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

v v.vY

19/28



SIDH: High-level view

E o E/A
¥B ®p!
E/B ———— E/(A,B)

Alice & Bob pick secret subgroups A and B of E.

Alice computes ¢ : E — E/A; Bob computes pp: E — E/B.
Alice and Bob transmit the values E/A and E/B.

Alice somehow obtains A’ := ¢p(A). (Similar for Bob.)

vV vV.v vY

They both compute the shared secret
(E/B)/A" = E/(A,B) = (E/A) /B,
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SIDH’s auxiliary points
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SIDH’s auxiliary points

7

Previous slide: “Alice somehow obtains A’ := @p(A).
Alice knows only A, Bob knows only ¢g. Hm.

Solution: ¢p is a group homomorphism!

Q v5(Q)

P ©p(P)

» Alice picks A as (P + [2]Q) for fixed public P,Q € E.
» Bob includes ¢p(P) and ¢3(Q) in his public key.
—> Now Alice can compute A" as (pp(P) + [a]vp(Q))!
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SIDH in one slide

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, va(PB), ¢a(QB) E/B, wp(Pa), ¢5(Qa)

é/}-&)
A" = (pp(Pa) + [alpp(Qa)) = (pa(Pg) + [b]a(QB))
s := j((E/B)/A") s:=j((E/A)/B)

Break it by: given public info, find secret key—p4 or just A.
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Security

Hard Problem:
Given

> supersingular public elliptic curves Eo/F,» and E4 /I
connected by a secret 2""-degree isogeny ¢, : Eg — E4,
and

» the action of ¢4 on the 3" -torsion of Ej,

find the secret key recover ¢ .
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Hard Problem:
Given

> supersingular public elliptic curves Eo/F,» and E4 /I
connected by a secret 2""-degree isogeny ¢, : Eg — E4,
and

» the action of ¢4 on the 3" -torsion of Ej,

find the secret key recover ¢ .

» Knowledge of End(Ej) and End(E,) is sufficient to
efficiently break it.

» Active attacker can recover secret.
» In SIDH, End(E) is fixed and 3" ~ 2" ~ | /p.
» If3" > 2" or 3",2" > | /p, security claims are weakened.
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Security of SIKE

» Best known attacks on SIKE, where Eo/IF), : y2 =x% +xand
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Security of SIKE

v

Best known attacks on SIKE, where Eo/F), : y2 =x% +xand
2" = 3™ are on the Isogeny Problem:

» The isogeny problem: given two elliptic curves, find an
isogeny between them.
Best classical attack: meet-in-the-middle O(p'/4).

Best quantum attack: meet-in-the-middle + Grover
O(p'/*), but slightly better in practise.

v

v

» No commutative group action to exploit here*
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What about signatures?
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CSI-FiSh (s ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren 19)
Identification scheme from H x S — S:

Prover Public Verifier
EeS l,eH
si< $7Z
sk =TI,
pk = sk x E . pk
c c+ ${0,1}
t $7Z -
esk = [ 1",
epk; = esk x E,
epk, = esk - sk™¢ pk,epk; ,epk,

 ’ check:

epk; = epk, * ([sk’] * E).

After k challenges c, an imposter succeeds with prob 2.
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SQISlgI’I (De Feo-Kohel-Leroux-Petit-Wesolowski “20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find a € H such that
axE=EFE.
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Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find an isogeny* E — E’

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E - Eqp

|

Ep —~E

ver

public, secret, ephemeral secret, public challenge, public proof
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» SIKE ‘11 KEM. Best-studied, in NIST, fast-ish, small,
torsion-point attacks most likely attack avenue.

» CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), slow, known quantum attack needs further
study, other attack avenues non-obvious.

» CSI-FiSh ‘19 Digital signature. Small-ish, flexible, slow,
known quantum attack reduces security below NIST Level
I, hard to scale up.

» SQISign “20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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Thank you!
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