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The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.

eg. WhatsApp messages; internet banking apps; sites using ‘https’.
I What is the discrete logarithm problem?
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The Discrete Logarithm Problem

I Let G be a group with group operation ∗.

I The discrete logarithm problem (DLP): given g ∈ G and
g ∗ · · · ∗ g︸ ︷︷ ︸

n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.
DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.
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The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:

I Let n = 9; compute 59 mod 23.
I If 5n = 11 mod 23; compute n.
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Square-and-multiply

Compute 59 mod 23.
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Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.
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Applications of Diffie-Hellman key exchange

The Diffie-Hellman key exchange is a building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp; Signal;

WireGuard).
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Cryptapocalyse
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Quantum cryptapocalyse

gn −→ −→ n

Shor’s algorithm quantumly computes n from gn and g in any
group in polynomial time. (About as fast as computing gn from
n and g).

 All applications of DLP are broken by quantum computers!
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Quantum cryptapocalyse

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough – and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain – that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.

Report by the US National Academy of Sciences, see
http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196
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Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp, Signal,

WireGuard).

I The WireGuard protocol’s special preconditions 
one-line fix to protect our current messages against future
quantum computers. 1

I For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

1

Recent joint work with Jacob Appelbaum and Peter Wu [AMW19].
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Square-and-multiply

Reminder: how to compute 59 mod 23.
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Square-and-multiply
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Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).
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Union of cycles: rapid mixing
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Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.
Edges: 3-, 5-, and 7-isogenies.
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Graphs of elliptic curves
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A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
(...and its dual isogeny)
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Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]
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Post-quantum Diffie-Hellman key exchange

I Shor’s quantum algorithm does not apply to the set of
nodes EA of the graph because they do not form a group.

I In [CLMPR18] we show how to construct such examples,
ie. where:
I The graph is a composition of compatible cycles.
I We can efficiently compute neighbours in given directions.

I We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Diffie- Hellman
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Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

I Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)
I Flexible:

I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange
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Parameters
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CSIDH-512 1 64 b 32 b 70 ms 212e6 4368 b 128
CSIDH-1024 3 128 b 64 b 256
CSIDH-1792 5 224 b 112 b 448

2For the NIST level 1 parameters, in [BLMP18] we built a simulator that
counts the number of bit operations in order to to analyze the fastest known
quantum attack.
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Work in progress & future work

I Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

 identity-based encryption?
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Thank you!
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CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

CSIDH SIDH
Speed (NIST 1) 70ms (can be improved) ≈ 10ms3

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant-time slowdown ≈ × 3 (can be improved) ≈ × 1
Submitted to NIST no yes

Maturity 9 months 8 years
Best classical attack p1/4 p1/4

Best quantum attack Lp[1/2] p1/6

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

3
This is a very conservative estimate!
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