Diffie-Hellman and its applications in a
post-quantum world

Chloe Martindale

www.martindale.info

University of Bristol, UK, 13th March 2019

1/25

www.martindale.info

The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.

/25

The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

/25

The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

» What is the discrete logarithm problem?

The Discrete Logarithm Problem

» Let G be a group with group operation *.

3/25

The Discrete Logarithm Problem

» Let G be a group with group operation *.

Example: Let

G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23, ..., 22 mod 23},

then G is a group with group operation * given by multiplication.

3/25

The Discrete Logarithm Problem

» Let G be a group with group operation *.

» The discrete logarithm problem (DLP): given ¢ € G and
g*---x g findn.
—_——

n times

Example: Let

G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23,..., 22 mod 23},

then G is a group with group operation * given by multiplication.

The Discrete Logarithm Problem

» Let G be a group with group operation *.

» The discrete logarithm problem (DLP): given ¢ € G and
g*---x g findn.
—_——

n times

Example: Let
G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23,..., 22 mod 23},

then G is a group with group operation * given by multiplication.
DLP in (Z/23Z) — {0}: Given g mod 23 and g" mod 23, find n.

The Discrete Logarithm Problem

The DLP is hard when, given g € G:
» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
—_——

n times

Example: Given ¢ = 5 mod 23:

/25

The Discrete Logarithm Problem

The DLP is hard when, given g € G:
» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
—_——

n times

Example: Given ¢ = 5 mod 23:
» Letn =9; compute 5 mod 23.

/25

The Discrete Logarithm Problem

The DLP is hard when, given g € G:

» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
—_——

n times
» Given g * - - - x g, computing 1 is slow. (eg. Exponential time).
—_—

n times

Example: Given ¢ = 5 mod 23:
» Letn =9; compute 5 mod 23.

/25

The Discrete Logarithm Problem

The DLP is hard when, given g € G:
» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
—_——

n times
» Given g * - - - x g, computing 1 is slow. (eg. Exponential time).
—_—

n times
Example: Given ¢ = 5 mod 23:

» Letn =9; compute 5 mod 23.
» If 5" = 11 mod 23; compute 7.

Square-and-multiply

Compute 57 mod 23.
51
52 .
S
54
5 .
50 *
5"
5"
B
510

5]]

521
. 520
: 519
518
. 517
. 516
° 515
.514
. .513
512

Square-and-multiply

Compute 57 mod 23.
51 50
52./.47'
%
./
/s
5
E
50 \5
57 '\-5

510 511

. 517

Square-and-multiply

Compute 57 mod 23.
51 50
"
52. 5
53 52
54
.52
5% ¢
56 o| 52
57
58)
59. .
510 511

521
. 520
: 519
518
. 517
. 516
° 515
.514
L
512

5/25

Square-and-multiply

Compute 57 mod 23.

510

521
. 520
: 519
518
. 517
. 516
° 515
.514
-
512

5/25

Square-and-multiply

Compute 57 mod 23.
51 50
e —"*
5 .
53
54
55 .
58
56 ¢
57 °
5
5.
510 511

521
. 520
: 519
518
. 517
. 516
° 515
.514
L
512

5/25

Square-and-multiply vs. solving DLP

» To compute 57 mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).

Square-and-multiply vs. solving DLP

» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).

» To compute n such that 5" = 11 mod 23, check:

Square-and-multiply vs. solving DLP

» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).

» To compute n such that 5" = 11 mod 23, check:
52 =2 # 11 mod 23

Square-and-multiply vs. solving DLP
» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).
» To compute n such that 5" = 11 mod 23, check:
52 =2 # 11 mod 23
53 =10 # 11 mod 23
5% =4 11 mod 23
5° =20 # 11 mod 23
5% = 8 % 11 mod 23
57 =17 # 11 mod 23
58 =16 # 11 mod 23
5° = 11 mod 23.

Square-and-multiply vs. solving DLP
» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).
» To compute n such that 5" = 11 mod 23, check:
52 =2 # 11 mod 23
53 =10 # 11 mod 23
5% =4 11 mod 23
5° =20 # 11 mod 23
5% = 8 % 11 mod 23
57 =17 # 11 mod 23
58 =16 # 11 mod 23
5° = 11 mod 23.
(Slow).

(There are smarter ways to do this in practise, but they're still slow).

Application of DLP: Diffie-Hellman key exchange

g€eG

7/25

Application of DLP: Diffie-Hellman key exchange

g€eG

Secret key: d Secret key: h

7/25

Application of DLP: Diffie-Hellman key exchange

g€eG

Secret key: d Public key: g? Secret key: h

Public key: g"
b

7/25

Application of DLP: Diffie-Hellman key exchange

g€eG

Secret key: d Public key: g? Secret key: h
Public key: gh

Shared secret: s = (g Shared secret: s = (g%)"

7/25

Application of DLP: Diffie-Hellman key exchange

g€G

Secret key: d Public key: g? Secret key: h
Public key:
ublic ey gh

Shared secret: s = (g Shared secret: s = (g%)"

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7/25

Applications of Diffie-Hellman key exchange

The Diffie-Hellman key exchange is a building block in:

» Digital signature schemes (used for example by some
online banking apps; secure websites).

» Encrypted messaging services (eg. WhatsApp; Signal;
WireGuard).

8/25

Quantum cryptapocalyse

Shor’s algorithm quantumly computes n from ¢" and g in any
group in polynomial time. (About as fast as computing ¢" from
n and g).

~+ All applications of DLP are broken by quantum computers!

\

E

///

11/25

Quantum cryptapocalyse

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough — and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain — that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.

Report by the US National Academy of Sciences, see

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

2 /95
2 /28

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

Reminder: applications of Diffie-Hellman key
exchange

» The Diffie-Hellman key exchange (and hence DLP) is a
building block in:
» Digital signature schemes (used for example by some
online banking apps; secure websites).

» Encrypted messaging services (eg. WhatsApp, Signal,
WireGuard).

Reminder: applications of Diffie-Hellman key
exchange

» The Diffie-Hellman key exchange (and hence DLP) is a
building block in:

» Digital signature schemes (used for example by some
online banking apps; secure websites).
» Encrypted messaging services (eg. WhatsApp, Signal,
WireGuard).
» The WireGuard protocol’s special preconditions ~-
one-line fix to protect our current messages against future
quantum computers. !

IRecent joint work with Jacob Appelbaum and Peter Wu [AMW19].

Reminder: applications of Diffie-Hellman key
exchange

» The Diffie-Hellman key exchange (and hence DLP) is a
building block in:

» Digital signature schemes (used for example by some
online banking apps; secure websites).
» Encrypted messaging services (eg. WhatsApp, Signal,
WireGuard).
» The WireGuard protocol’s special preconditions ~-
one-line fix to protect our current messages against future
quantum computers. !

» For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

IRecent joint work with Jacob Appelbaum and Peter Wu [AMW19].

Square-and-multiply

Reminder: how to compute 5” mod 23.

51 50
52 .47'
53)
54
5%
58
56
57 °
58)
59. .
510 511

521
. 520
: 519
518
. 517
. 516
° 515
.514
. .513
512

14 / 25

Square-and-multiply

51 50 521
52 eiea 50
53 .‘(' 555 5 °\.519

-5 -5
5 ¥ 50,518 . 5
5 fl 55 45’(. 17 2 e 5 5, ee 321
. .5 2 2 2 2
56 .)4-5 = 2 516 54./_52-5 -5 _5;\.518 55./_52-5 -5 _5§\.519
s e .5 5815 .5) .5)
N s 575 563 2 RS LR A 2 A5V
58 N, 5 5 .55 A5l \ =2 2" f \ 2 g2
> 7 go\0" 525 %y 90”525
59 Fese>e 13 55,20 5 5N, 12,50
510 11 512 510 512 511 513
50 5!
54 ‘/:??18 55. .(\?19 P (\5,14 5 K.\§15
=4 4
B0 Nau 90T Ngts g5 T N 5555 N
” _—4" J " —4'Y J 58 58 J 58 58'[
5 5 5 5 . .
5124 . /510 513.\ o sl 52 \58 A B 58452
16" -34.31-54 . 1;' ‘;4";1-:74 o o5 585 9 O 58 5
10,5 s S5 1050 %510 1Ny %513
520 52 521 53 518 54 519 55

15 /25

Square-and-multiply

o 51 5.0 521 S
RN
53 / -\.519
54 ./ \. 518 “
5 [/ \TSU S 5, e
5 ! 3516 54/./ Ns18 55/./ N\ 519
5N\, /5" 569 o516 57 e s517
58\, 5 \0 J .. o/
59 e—e—e" o153 58\, 5" 59\, 5%
510 11 512 510 512 511 513
0 51
5 e 518 5 e 5 55 __—e 5 5 e 57
58/./ AN fm 59/./ .\515 516{'/ .56 517/./ .57
512.\ /.510 513.\ sl 52 .\ 9520 53e o521
SN, 56 517’\. T 510\ 512 5115\ 513
50 52 521 53 518 54 519 55

15 /25

Square-and-multiply
2 51 50 5 20
53 .5/-/ ".\'\-5\ 519
5/ .\. 518

15 /25

Square-and-multiply
2 51 50 521 20
53 5/-/ T \'\P\ 519
54 /. '\. 518

o \ 7
l
56 -\ * 516
/' 515

Needed for Diffie-Hellman: Cycles are compatible—
[right, then left] = [left, then right], etc. (Else (5°)" # (5")").

15 /25

Union of cycles: rapid mixing

'lwWoWo-“
7 SU
17 17

17

16 /25

Union of cycles: rapid mixing

v
A ;\i{g’;

4 AN
4=
ke
Y ! \
W

Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.

16 /25

Graphs of elliptic curves

\ 22]
l,',’- -‘\“I

17 / 25

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E4: y* = x*> + Ax? + x over Z /419Z.

17 / 25

Graphs of elliptic curves

Y ..‘.‘02“

V2]
e NN
15 N

Nodes: Supersingular elliptic curves E4: y* = x*> + Ax? + x over Z /419Z.
Edges: 3-, 5-, and 7-isogenies.

17 / 25

Graphs of elliptic curves

A 3-isogeny

(picture not toseale) _ _ — —

Esq: yZ:x3 Jr51x2 +x — Eqo: yz = <|»9xZ “+x

97:3 1832 4 x
x2 1833497

1333 415422 —5¢4.97
—x3 46522 4128x—133

(Y i

(...and its dual isogeny) Y

AN

A
E199 £y Epy 220

18 / 25

Diffie-Hellman on isogeny graphs

ob
-, _|_]

9

B
+,+

[

Alice
) +7 _]

9

[+

19/25

Diffie-Hellman on isogeny graphs

T] 2

2
L]
4

W\
X m -
<« 7 RS

A
s S

] 7

A\,

[7

]
AN
X

.
1%

19/25

Diffie-Hellman on isogeny graphs

19/25

Diffie-Hellman on isogeny graphs

19/25

Diffie-Hellman on isogeny graphs

RS %A
a | . /
g . |
g "/ i

+ BB y

— Ny TOORA

Y 7 “‘0‘0‘.
/.\{ —_—

e
g+
< |

=+

19/25

Diffie-Hellman on isogeny graphs

X

PSS
AESCS S
"v&"/‘ 4/
N
\

19/25

Diffie-Hellman on isogeny graphs

.
— 17 X
¥ | eseeleat
. FrZaa S
\

Alice
) +7 _]

19/25

Diffie-Hellman on isogeny graphs

\
Nt
SRS

19/25

Diffie-Hellman on isogeny graphs

19/25

Diffie-Hellman on isogeny graphs

19/25

Diffie-Hellman on isogeny graphs

19/25

Post-quantum Diffie-Hellman key exchange

» Shor’s quantum algorithm does not apply to the set of
nodes E4 of the graph because they do not form a group.

20/25

Post-quantum Diffie-Hellman key exchange

» Shor’s quantum algorithm does not apply to the set of
nodes E4 of the graph because they do not form a group.

» In [CLMPR18] we show how to construct such examples,
ie. where:

» The graph is a composition of compatible cycles.

» We can efficiently compute neighbours in given directions.

20/25

Post-quantum Diffie-Hellman key exchange

» Shor’s quantum algorithm does not apply to the set of
nodes E4 of the graph because they do not form a group.

» In [CLMPR18] we show how to construct such examples,
ie. where:

» The graph is a composition of compatible cycles.

» We can efficiently compute neighbours in given directions.

» We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Difﬁe- Hellman

20/25

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

22/25

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

22/25

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

» Competitive speed: ~ 35ms per operation

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

» Competitive speed: ~ 35ms per operation

» Security is based on a well-studied mathematical problem
(no added extra structure that could weaken security)

Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

» Competitive speed: ~ 35ms per operation

» Security is based on a well-studied mathematical problem
(no added extra structure that could weaken security)

» Flexible:

» [DG] uses CSIDH for ‘SeaSign’ signatures
» [DGOPS] uses CSIDH for oblivious transfer
» [FTY] uses CSIDH for authenticated group key exchange

Parameters

! o)

g B .

IS £

Sl 8 | 3 | % 2 e || 5

Z ; > s = g 3

ko] (] ,_94) = =]) ‘c_‘n

o) o P B = = <

el 9 - = [99) 9

= = S py Q 4 R7)

Q i) > b3 [1%}

gl 5z | g% | % |2

CSIDH-logp || -£ 2, a. B o k] <
CSIDH-512 1 64b | 32b | 70ms | 212e6 | 4368b || 128
CSIDH-1024 || 3 || 128b | 64b 256
CSIDH-1792 || 5 || 224b | 112b 448

2For the NIST level 1 parameters, in [BLMP18] we built a simulator that
counts the number of bit operations in order to to analyze the fastest known

quantum attack.

Work in progress & future work

» Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

Work in progress & future work

» Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

» More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!

The tiny keys make CSIDH ideal for implementation on small devices.

Work in progress & future work

» Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

» More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

» Explore different graph structures occuring for other
curves/geometrical objects.

Work in progress & future work

» Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

» More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

» Explore different graph structures occuring for other
curves/geometrical objects.

» More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

~ identity-based encryption?

I— ¥
k W g

a1

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

CSIDH SIDH
Speed (NIST 1) 70ms (can be improved) ~ 10ms®
Public key size (NIST 1) 64B 378B
Key compression (speed) ~ 15ms
Key compression (size) 222B
Constant-time slowdown ~ X 3 (can be improved) ~ x1
Submitted to NIST no yes
Maturity 9 months 8 years
Best classical attack pl/4 pl/*
Best quantum attack L,[1/2] pl/®
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

3 . .
This is a very conservative estimate!

References

AMW

BLMP

CLMPR

DG

DGOPS

FTY

Appelbaum, Martindale, and Wu:

Tiny Wireguard Tweak

(upcoming)

Bernstein, Lange, Martindale, and Panny:

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org (Eurocrypt 2019)

Castryck, Lange, Martindale, Panny, Renes:

CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383 (Asiacrypt 2018)

De Feo, Galbraith:

SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

Delpech de Saint Guilhem, Orsini, Petit, and Smart:

Secure Oblivious Transfer from Semi-Commutative Masking
https://ia.cr/2018/648

Fujioka, Takashima, and Yoneyama:

One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

https://quantum.isogeny.org
https://ia.cr/2018/383
https://ia.cr/2018/824
https://ia.cr/2018/648
https://eprint.iacr.org/2018/1033

