Diffie-Hellman and its applications in a
post-quantum world

Chloe Martindale

www.martindale.info

University of Bristol, UK, 13th March 2019

1/25


www.martindale.info

The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.

/25



The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

/25



The Discrete Logarithm Problem

» Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

» What is the discrete logarithm problem?



The Discrete Logarithm Problem

» Let G be a group with group operation *.

3/25



The Discrete Logarithm Problem

» Let G be a group with group operation *.

Example: Let

G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23, ..., 22 mod 23},

then G is a group with group operation * given by multiplication.

3/25



The Discrete Logarithm Problem

» Let G be a group with group operation *.

» The discrete logarithm problem (DLP): given ¢ € G and
g*---x g findn.
—_——

n times

Example: Let

G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23,..., 22 mod 23},

then G is a group with group operation * given by multiplication.



The Discrete Logarithm Problem

» Let G be a group with group operation *.

» The discrete logarithm problem (DLP): given ¢ € G and
g*---x g findn.
—_——

n times

Example: Let
G = (Z/237Z) — {0}
= {1 mod 23, 2 mod 23, 3 mod 23,..., 22 mod 23},

then G is a group with group operation * given by multiplication.
DLP in (Z/23Z) — {0}: Given g mod 23 and g" mod 23, find n.
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The DLP is hard when, given g € G:
» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
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The DLP is hard when, given g € G:

» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
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The Discrete Logarithm Problem

The DLP is hard when, given g € G:
» Givenn € Z, computing g * - - - * g is fast. (eg. Polynomial time).
—_——

n times
» Given g * - - - x g, computing 1 is slow. (eg. Exponential time).
—_—

n times
Example: Given ¢ = 5 mod 23:

» Letn =9; compute 5 mod 23.
» If 5" = 11 mod 23; compute 7.
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Square-and-multiply vs. solving DLP

» To compute 57 mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).
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Square-and-multiply vs. solving DLP
» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).
» To compute n such that 5" = 11 mod 23, check:
52 =2 # 11 mod 23
53 =10 # 11 mod 23
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Square-and-multiply vs. solving DLP
» To compute 5° mod 23, compute:
5-5% = 5. ((5%)%)2 mod 23. (Fast).
» To compute n such that 5" = 11 mod 23, check:
52 =2 # 11 mod 23
53 =10 # 11 mod 23
5% =4 11 mod 23
5° =20 # 11 mod 23
5% = 8 % 11 mod 23
57 =17 # 11 mod 23
58 =16 # 11 mod 23
5° = 11 mod 23.
(Slow).

(There are smarter ways to do this in practise, but they're still slow).
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Application of DLP: Diffie-Hellman key exchange

g€G

Secret key: d Public key: g? Secret key: h
Public key:
ublic ey gh

Shared secret: s = (g Shared secret: s = (g%)"

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.
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Applications of Diffie-Hellman key exchange

The Diffie-Hellman key exchange is a building block in:

» Digital signature schemes (used for example by some
online banking apps; secure websites).

» Encrypted messaging services (eg. WhatsApp; Signal;
WireGuard).
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Quantum cryptapocalyse

Shor’s algorithm quantumly computes n from ¢" and g in any
group in polynomial time. (About as fast as computing ¢" from
n and g).

~+ All applications of DLP are broken by quantum computers!
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Quantum cryptapocalyse

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough — and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain — that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.

Report by the US National Academy of Sciences, see

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

2 /95
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Reminder: applications of Diffie-Hellman key
exchange
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» Digital signature schemes (used for example by some
online banking apps; secure websites).

» Encrypted messaging services (eg. WhatsApp, Signal,
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Reminder: applications of Diffie-Hellman key
exchange

» The Diffie-Hellman key exchange (and hence DLP) is a
building block in:

» Digital signature schemes (used for example by some
online banking apps; secure websites).
» Encrypted messaging services (eg. WhatsApp, Signal,
WireGuard).
» The WireGuard protocol’s special preconditions ~-
one-line fix to protect our current messages against future
quantum computers. !

» For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

IRecent joint work with Jacob Appelbaum and Peter Wu [AMW19].
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Reminder: how to compute 5” mod 23.
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Square-and-multiply
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Square-and-multiply
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Square-and-multiply
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Needed for Diffie-Hellman: Cycles are compatible—
[right, then left] = [left, then right], etc. (Else (5°)" # (5")").
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Union of cycles: rapid mixing

'lwWoWo-“
7 SU
17 17

17

16 /25



Union of cycles: rapid mixing
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Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.
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Graphs of elliptic curves
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Graphs of elliptic curves

Nodes: Supersingular elliptic curves E4: y* = x*> + Ax? + x over Z /419Z.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves E4: y* = x*> + Ax? + x over Z /419Z.
Edges: 3-, 5-, and 7-isogenies.
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Graphs of elliptic curves

A 3-isogeny

(picture not toseale) _ _ — —

Esq: yZ:x3 Jr51x2 +x — Eqo: yz = <|»9xZ “+x

97:3 1832 4 x
x2 1833497

1333 415422 —5¢4.97
—x3 46522 4128x—133

(Y i

(...and its dual isogeny) Y

AN

A
E199 £y Epy 220

18 / 25



Diffie-Hellman on isogeny graphs
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Diffie-Hellman on isogeny graphs
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Diffie-Hellman on isogeny graphs
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Diffie-Hellman on isogeny graphs
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Post-quantum Diffie-Hellman key exchange

» Shor’s quantum algorithm does not apply to the set of
nodes E4 of the graph because they do not form a group.
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Post-quantum Diffie-Hellman key exchange

» Shor’s quantum algorithm does not apply to the set of
nodes E4 of the graph because they do not form a group.

» In [CLMPR18] we show how to construct such examples,
ie. where:

» The graph is a composition of compatible cycles.

» We can efficiently compute neighbours in given directions.

» We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Difﬁe- Hellman

20/25
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Why CSIDH?

» Drop-in post-quantum replacement for Diffie-Hellman

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

» Competitive speed: ~ 35ms per operation

» Security is based on a well-studied mathematical problem
(no added extra structure that could weaken security)

» Flexible:

» [DG] uses CSIDH for ‘SeaSign’ signatures
» [DGOPS] uses CSIDH for oblivious transfer
» [FTY] uses CSIDH for authenticated group key exchange



Parameters
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2For the NIST level 1 parameters, in [BLMP18] we built a simulator that
counts the number of bit operations in order to to analyze the fastest known

quantum attack.
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Work in progress & future work

» Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

» More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

» Explore different graph structures occuring for other
curves/geometrical objects.

» More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

~ identity-based encryption?
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CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

CSIDH SIDH
Speed (NIST 1) 70ms (can be improved) ~ 10ms®
Public key size (NIST 1) 64B 378B
Key compression (speed) ~ 15ms
Key compression (size) 222B
Constant-time slowdown ~ X 3 (can be improved) ~ x1
Submitted to NIST no yes
Maturity 9 months 8 years
Best classical attack pl/4 pl/*
Best quantum attack L,[1/2] pl/®
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

3 . .
This is a very conservative estimate!
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