
Diffie-Hellman and its applications in a
post-quantum world

Chloe Martindale
www.martindale.info

University of Bristol, UK, 13th March 2019

1 / 25

www.martindale.info


The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.

eg. WhatsApp messages; internet banking apps; sites using ‘https’.
I What is the discrete logarithm problem?

2 / 25



The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

I What is the discrete logarithm problem?

2 / 25



The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

I What is the discrete logarithm problem?

2 / 25



The Discrete Logarithm Problem

I Let G be a group with group operation ∗.

I The discrete logarithm problem (DLP): given g ∈ G and
g ∗ · · · ∗ g︸ ︷︷ ︸

n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.
DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 25



The Discrete Logarithm Problem

I Let G be a group with group operation ∗.

I The discrete logarithm problem (DLP): given g ∈ G and
g ∗ · · · ∗ g︸ ︷︷ ︸

n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.

DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 25



The Discrete Logarithm Problem

I Let G be a group with group operation ∗.
I The discrete logarithm problem (DLP): given g ∈ G and

g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.

DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 25



The Discrete Logarithm Problem

I Let G be a group with group operation ∗.
I The discrete logarithm problem (DLP): given g ∈ G and

g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.
DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 25



The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:

I Let n = 9; compute 59 mod 23.
I If 5n = 11 mod 23; compute n.

4 / 25



The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.

I If 5n = 11 mod 23; compute n.

4 / 25



The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.

I If 5n = 11 mod 23; compute n.

4 / 25



The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.
I If 5n = 11 mod 23; compute n.

4 / 25



Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 25



Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 25



Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 25



Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 25



Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 25



Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 25



Applications of Diffie-Hellman key exchange

The Diffie-Hellman key exchange is a building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp; Signal;

WireGuard).

8 / 25



Cryptapocalyse

9 / 25



Quantum cryptapocalyse

gn −→ −→ n

Shor’s algorithm quantumly computes n from gn and g in any
group in polynomial time. (About as fast as computing gn from
n and g).

 All applications of DLP are broken by quantum computers!

10 / 25



11 / 25



Quantum cryptapocalyse

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough – and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain – that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.

Report by the US National Academy of Sciences, see
http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

12 / 25

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196


Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp, Signal,

WireGuard).

I The WireGuard protocol’s special preconditions 
one-line fix to protect our current messages against future
quantum computers. 1

I For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

1

Recent joint work with Jacob Appelbaum and Peter Wu [AMW19].

13 / 25



Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp, Signal,

WireGuard).
I The WireGuard protocol’s special preconditions 

one-line fix to protect our current messages against future
quantum computers. 1

I For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

1Recent joint work with Jacob Appelbaum and Peter Wu [AMW19].
13 / 25



Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp, Signal,

WireGuard).
I The WireGuard protocol’s special preconditions 

one-line fix to protect our current messages against future
quantum computers. 1

I For most other applications, we need a post-quantum
Diffie-Hellman-style key exchange.

1Recent joint work with Jacob Appelbaum and Peter Wu [AMW19].
13 / 25



Square-and-multiply

Reminder: how to compute 59 mod 23.

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

14 / 25



Square-and-multiply

·5
·5

·5
·5
·5
·5
·5
·5

·5 ·5 ·5 ·5
·5
·5
·5
·5
·5

·5
·5

·5·5·5

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

·52

·52

·52

·52
·52 ·52

·52
·52

·52·52·52

50
52

54

56

58

510 512
514

516

518

520

·52

·52

·52

·52
·52 ·52

·52
·52

·52·52·52

51
53

55

57

59

511 513
515

517

519

521

·54

·54

·54

·54
·54 ·54

·54
·54

·54·54·54

50
54

58

512

516

520 52
56

510

514

518

·54

·54

·54

·54
·54 ·54

·54
·54

·54·54·54

51
55

59

513

517

521 53
57

511

515

519

·58

·58

·58

·58
·58 ·58

·58
·58

·58·58·58

50
58

516

52

510

518 54
512

520

56

514

·58

·58

·58

·58
·58 ·58

·58
·58

·58·58·58

51
59

517

53

511

519 55
513

521

57

515

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 25



Square-and-multiply

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
52

54

56

58

510 512
514

516

518

520 51
53

55

57

59

511 513
515

517

519

521

50
54

58

512

516

520 52
56

510

514

518 51
55

59

513

517

521 53
57

511

515

519 50
58

516

52

510

518 54
512

520

56

514 51
59

517

53

511

519 55
513

521

57

515

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 25



Square-and-multiply
50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 25



Square-and-multiply
50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 25



Union of cycles: rapid mixing
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12

g13

g14

g15

g16

g17

g18

g19

g20
g21

Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.

16 / 25



Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12

g13

g14

g15

g16

g17

g18

g19

g20
g21

Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.

16 / 25



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.
Edges: 3-, 5-, and 7-isogenies.

17 / 25



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.

Edges: 3-, 5-, and 7-isogenies.

17 / 25



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.
Edges: 3-, 5-, and 7-isogenies.

17 / 25



Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
(...and its dual isogeny)

18 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

19 / 25



Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

19 / 25



Post-quantum Diffie-Hellman key exchange

I Shor’s quantum algorithm does not apply to the set of
nodes EA of the graph because they do not form a group.

I In [CLMPR18] we show how to construct such examples,
ie. where:
I The graph is a composition of compatible cycles.
I We can efficiently compute neighbours in given directions.

I We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Diffie- Hellman

20 / 25



Post-quantum Diffie-Hellman key exchange

I Shor’s quantum algorithm does not apply to the set of
nodes EA of the graph because they do not form a group.

I In [CLMPR18] we show how to construct such examples,
ie. where:
I The graph is a composition of compatible cycles.
I We can efficiently compute neighbours in given directions.

I We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Diffie- Hellman

20 / 25



Post-quantum Diffie-Hellman key exchange

I Shor’s quantum algorithm does not apply to the set of
nodes EA of the graph because they do not form a group.

I In [CLMPR18] we show how to construct such examples,
ie. where:
I The graph is a composition of compatible cycles.
I We can efficiently compute neighbours in given directions.

I We give parameters for secure post-quantum
non-interactive key exchange using this graph.

Commutative Supersingular Isogeny Diffie- Hellman

20 / 25



["si:­saId]

21 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

I Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)
I Flexible:

I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly

I Small keys: 64 bytes at conjectured AES-128 security level
(smallest of all post-quantum key exchange proposals)

I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)
I Flexible:

I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Small keys: 64 bytes at conjectured AES-128 security level

(smallest of all post-quantum key exchange proposals)

I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)
I Flexible:

I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Small keys: 64 bytes at conjectured AES-128 security level

(smallest of all post-quantum key exchange proposals)
I Competitive speed: ∼ 35 ms per operation

I Security is based on a well-studied mathematical problem
(no added extra structure that could weaken security)

I Flexible:
I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Small keys: 64 bytes at conjectured AES-128 security level

(smallest of all post-quantum key exchange proposals)
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

I Flexible:
I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Small keys: 64 bytes at conjectured AES-128 security level

(smallest of all post-quantum key exchange proposals)
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)
I Flexible:

I [DG] uses CSIDH for ‘SeaSign’ signatures
I [DGOPS] uses CSIDH for oblivious transfer
I [FTY] uses CSIDH for authenticated group key exchange

22 / 25



Parameters

CSIDH-log p in
te

nd
ed

N
IS

T
le

ve
l2

pu
bl

ic
ke

y
si

ze

pr
iv

at
e

ke
y

si
ze

ti
m

e
(f

ul
le

xc
ha

ng
e)

cy
cl

es
(f

ul
le

xc
ha

ng
e)

st
ac

k
m

em
or

y

cl
as

si
ca

ls
ec

ur
it

y

CSIDH-512 1 64 b 32 b 70 ms 212e6 4368 b 128
CSIDH-1024 3 128 b 64 b 256
CSIDH-1792 5 224 b 112 b 448

2For the NIST level 1 parameters, in [BLMP18] we built a simulator that
counts the number of bit operations in order to to analyze the fastest known
quantum attack.

23 / 25



Work in progress & future work

I Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

 identity-based encryption?

24 / 25



Work in progress & future work

I Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

 identity-based encryption?

24 / 25



Work in progress & future work

I Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

 identity-based encryption?

24 / 25



Work in progress & future work

I Fast and constant-time implementation of CSIDH. (We
already introduced some ideas for optimizing a
constant-time optimization in [BLMP]).

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.
One aim: find a post-quantum isogeny-based bilinear map

 identity-based encryption?

24 / 25



Thank you!

25 / 25



CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

CSIDH SIDH
Speed (NIST 1) 70ms (can be improved) ≈ 10ms3

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant-time slowdown ≈ × 3 (can be improved) ≈ × 1
Submitted to NIST no yes

Maturity 9 months 8 years
Best classical attack p1/4 p1/4

Best quantum attack Lp[1/2] p1/6

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

3
This is a very conservative estimate!

25 / 25



References

AMW Appelbaum, Martindale, and Wu:
Tiny Wireguard Tweak
(upcoming)

BLMP Bernstein, Lange, Martindale, and Panny:
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org (Eurocrypt 2019)

CLMPR Castryck, Lange, Martindale, Panny, Renes:
CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383 (Asiacrypt 2018)

DG De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

DGOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:
Secure Oblivious Transfer from Semi-Commutative Masking
https://ia.cr/2018/648

FTY Fujioka, Takashima, and Yoneyama:
One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

https://quantum.isogeny.org
https://ia.cr/2018/383
https://ia.cr/2018/824
https://ia.cr/2018/648
https://eprint.iacr.org/2018/1033

