Protocols: continued

Chloe Martindale

Technische Universiteit Eindhoven

Birmingham, UK, 16 September 2019

Slides at www.martindale.info/talks

Application 1 of (C)SIDH: Digital signatures.

Application 1 of (C)SIDH: Digital signatures.

Application 1 of (C)SIDH: Digital signatures.

One way to build signatures: Identification scheme (simplified here) Prover Verifier

One way to build signatures: Identification scheme (simplified here) Signer Verifier

msg, H

 $\begin{array}{c} \xrightarrow{\text{KeyGen}} (\text{sk},\text{pk}) \\ \text{sk}, \text{ran}_1 \xrightarrow{\text{magic}} \text{ID} \\ c := H(\text{ID}||\text{msg}) \\ \text{sk}, \text{ID}, c, \text{ran}_2 \xrightarrow{\text{magic}} \text{ID-c} \\ & \overbrace{(\text{pk}, \text{ID}, \text{ID-c})}^{\text{werify}(\text{pk}, \text{ID}, \text{H}(\text{ID}||\text{msg}), \text{ID-c})} \end{array}$

One way to build signatures: Identification scheme (simplified here) Prover Verifier

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

ProverPublicVerifier $E, \mathcal{O} = \operatorname{End}(E),$ ideals $\mathfrak{l}_1, \dots, \mathfrak{l}_n \in \operatorname{cl}(\mathcal{O})$

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

Prover	Public	Verifier
	$E, \mathcal{O} = \operatorname{End}(E),$	
	ideals $\mathfrak{l}_1, \ldots, \mathfrak{l}_n \in \mathrm{cl}(\mathcal{O})$	
$e_1,\ldots,e_n\in\mathbb{Z}_{[-B,B]}$		
Con		

 $\xrightarrow{\mathsf{KeyGen}} ([\mathbf{a}] = [\prod \mathfrak{l}_i^{e_i}], [\mathbf{a}] * E)$

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

$$\begin{array}{ccc} \underline{\operatorname{Prover}} & \underline{\operatorname{Public}} & \underline{\operatorname{Verifier}}\\ E, \mathcal{O} = \operatorname{End}(E), \\ \mathrm{ideals} \ \mathfrak{l}_1, \dots, \mathfrak{l}_n \in \operatorname{cl}(\mathcal{O}) \\ \hline e_1, \dots, e_n \in \mathbb{Z}_{[-B,B]} \\ \xrightarrow{\operatorname{KeyGen}} ([\mathbf{a}] = [\prod \mathfrak{l}_i^{e_i}], [\mathbf{a}] * E) \\ & & & \\ \operatorname{random} f_1, \dots, f_n \in \mathbb{Z}_{[-B,B]} \\ \xrightarrow{\operatorname{KeyGen}} \begin{cases} [\mathbf{b}] = [\prod \mathfrak{l}_i^{f_i}], \\ \mathrm{ID} = [\mathbf{b}] * E \end{cases} \\ & & \\ \operatorname{ID-c} = \mathbf{ba}^{-c} \end{cases} \end{array}$$

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

$$\begin{array}{ccc} \underline{Prover} & \underline{Public} & \underline{Verifier} \\ E, \mathcal{O} = \operatorname{End}(E), \\ \operatorname{ideals} \mathfrak{l}_1, \dots, \mathfrak{l}_n \in \operatorname{cl}(\mathcal{O}) \\ e_1, \dots, e_n \in \mathbb{Z}_{[-B,B]} \\ & \\ \underbrace{KeyGen} \left([\mathbf{a}] = [\prod \mathfrak{l}_i^{e_i}], [\mathbf{a}] * E \right) \\ & \\ \operatorname{random} f_1, \dots, f_n \in \mathbb{Z}_{[-B,B]} \\ & \\ \underbrace{KeyGen}_{i \mid D} = [\bigcup \mathfrak{l}_i^{f_i}], \\ & \\ \underbrace{KeyGen}_{i \mid D} = [\bigcup \mathfrak{l}_i^{e_i}] * E \\ & \\ \operatorname{ID-c} = \mathbf{ba}^{-c} \\ & \\ & \\ \underbrace{([\mathbf{a}] * E, \operatorname{ID}, \operatorname{ID-c}) \longrightarrow \operatorname{check} \operatorname{that}}_{i \mid D} \cong \operatorname{ID-c} * ([\mathbf{a}^c] * E) \end{array}$$

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

··· after *k* challenges *c*, an imposter prover succeeds with probability 2^{-k} .

Big question: how do you communicate ID-c = ba⁻¹ without leaking a?

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- ► Big answer: in terms of generators of class group cl(*O*).

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- ► Big answer: in terms of generators of class group cl(*O*).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- Big answer: in terms of generators of class group cl(O).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- Big answer: in terms of generators of class group cl(O).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.
 - ► cl(O) is generated by an ideal of norm 3.

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- Big answer: in terms of generators of class group cl(O).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.
 - ► cl(O) is generated by an ideal of norm 3.
 - ► Elements of cl(*O*) easy to represent.

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- ► Big answer: in terms of generators of class group cl(*O*).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.
 - ► cl(*O*) is generated by an ideal of norm 3.
 - ► Elements of cl(*O*) easy to represent.
 - CSI-FiSh signatures take \approx 390ms/263B.

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- Big answer: in terms of generators of class group cl(O).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.
 - ► cl(*O*) is generated by an ideal of norm 3.
 - ► Elements of cl(*O*) easy to represent.
 - CSI-FiSh signatures take \approx 390ms/263B.
- ► For higher security levels (NIST 3, 5), computing the entire class group become impractical.

- Big question: how do you communicate ID-c = ba⁻¹ without leaking a?
- Big answer: in terms of generators of class group cl(O).
- ► CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group cl(O) for CSIDH-512:
 - $cl(\mathcal{O})$ is cyclic.
 - ► cl(*O*) is generated by an ideal of norm 3.
 - ► Elements of cl(*O*) easy to represent.
 - CSI-FiSh signatures take \approx 390ms/263B.
- ► For higher security levels (NIST 3, 5), computing the entire class group become impractical.
- For SIDH, more complicated as keys cannot be reused; class group computation much harder
 → signatures take ≈ 3.7s/141KB.

Application 2 of (C)SIDH: VDFs.

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function $f: X \to Y$ that:

► Is computed in *n* sequential steps, each of which takes time *t*. The total time *T* = *nt* is the delay factor.

Application 2 of (C)SIDH: VDFs.

- Is computed in *n* sequential steps, each of which takes time *t*. The total time *T* = *nt* is the delay factor.
 - ► Example: repeated hashing $s \to H(s) \to H(H(s)) \to \cdots \to H^{(n)}(s).$

Application 2 of (C)SIDH: VDFs.

- Is computed in *n* sequential steps, each of which takes time *t*. The total time *T* = *nt* is the delay factor.
 - ► Example: repeated hashing $s \to H(s) \to H(H(s)) \to \cdots \to H^{(n)}(s).$
- ► Cannot be computed in time faster than *T*, even given unlimited resources.

Application 2 of (C)SIDH: VDFs.

- Is computed in *n* sequential steps, each of which takes time *t*. The total time *T* = *nt* is the delay factor.
 - ► Example: repeated hashing $s \to H(s) \to H(H(s)) \to \cdots \to H^{(n)}(s).$
- ► Cannot be computed in time faster than *T*, even given unlimited resources.
- The correctness of the output can be quickly verified.

Application 2 of (C)SIDH: VDFs.

- Is computed in *n* sequential steps, each of which takes time *t*. The total time *T* = *nt* is the delay factor.
 - ► Example: repeated hashing $s \to H(s) \to H(H(s)) \to \cdots \to H^{(n)}(s).$
- ► Cannot be computed in time faster than *T*, even given unlimited resources.
- The correctness of the output can be quickly verified.
 - ► Non-example: repeated hashing.

One way to build VDFs:

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

• Natural sequential function f: compose ℓ -isogenies φ_i

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

• Natural sequential function f: compose ℓ -isogenies φ_i

► How to quickly verify correctness of the output?

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

• Natural sequential function f: compose ℓ -isogenies φ_i

► How to quickly verify correctness of the output? Pairings.

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis $E[N] = \langle R, S \rangle$.

(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis $E[N] = \langle R, S \rangle$. For any points $P, Q \in E[N]$ there exist $a, b, c, d \in \mathbb{Z}/N\mathbb{Z}$ such that

P = aR + bSQ = cR + dS.

(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis $E[N] = \langle R, S \rangle$. For any points $P, Q \in E[N]$ there exist $a, b, c, d \in \mathbb{Z}/N\mathbb{Z}$ such that

P = aR + bSQ = cR + dS.

The form

$$\det_N(P,Q) = \det \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = ad - bc \in \mathbb{Z}/n\mathbb{Z}$$

is bilinear, non-degenerate, and independent from the choice of basis. (Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings 2/4

Theorem Let E/\mathbb{F}_q be a curve. There exists a Galois invariant bilinear map

$$e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q},$$

called the Weil pairing of order N*, and a primitive* N*-th root of unity* $\zeta \in \overline{\mathbb{F}_q}$ *such that*

$$e(P,Q) = \zeta^{det_N(P,Q)}$$

(Slide stolen shamelessly from Luca De Feo)

Theorem

Let E/\mathbb{F}_q *be a curve. There exists a Galois invariant bilinear map*

$$e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q},$$

called the Weil pairing of order N*, and a primitive* N*-th root of unity* $\zeta \in \overline{\mathbb{F}_q}$ *such that*

$$e(P,Q) = \zeta^{det_N(P,Q)}.$$

The degree k of the smallest extension such that $\zeta \in \mathbb{F}_{q^k}$ is called the *embedding degree of the pairing*. (Slide stolen shamelessly from Luca De Feo)

For any elliptic curve E/\mathbb{F}_q , we have the Weil pairing

 $e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q}.$

For any elliptic curve E/\mathbb{F}_q , we have the Weil pairing $e: E[N] \times E[N] \rightarrow \mu_N \subseteq \overline{\mathbb{F}_q}.$

Can think of it as a map of groups

 $e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3.$

For any elliptic curve E/\mathbb{F}_q , we have the Weil pairing $e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q}.$

Can think of it as a map of groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3.$$

There exist efficiently computable pairings with:

• $\mathbb{G}_1 \subseteq E(\mathbb{F}_q)$ of prime order.

For any elliptic curve E/\mathbb{F}_q , we have the Weil pairing

 $e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q}.$

Can think of it as a map of groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3.$$

There exist efficiently computable pairings with:

- $\mathbb{G}_1 \subseteq E(\mathbb{F}_q)$ of prime order.
- G₂ ⊆ E(F_{q^k}) of prime order (remember k is the embedding degree).

For any elliptic curve E/\mathbb{F}_q , we have the Weil pairing

 $e: E[N] \times E[N] \to \mu_N \subseteq \overline{\mathbb{F}_q}.$

Can think of it as a map of groups

$$e: \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3.$$

There exist efficiently computable pairings with:

- $\mathbb{G}_1 \subseteq E(\mathbb{F}_q)$ of prime order.
- G₂ ⊆ E(F_{q^k}) of prime order (remember k is the embedding degree).
- $\mathbb{G}_3 \subseteq \mathbb{F}_{q^k}^*$ of prime order.

► Let *E*/𝔽_q and *E*'/𝔽_q be elliptic curves with the same embedding degree *k*.

- ► Let *E*/𝔽_q and *E*'/𝔽_q be elliptic curves with the same embedding degree *k*.
- Let $f : E \to E'$ be an isogeny with dual $\hat{f} : E' \to E$.

- ► Let *E*/𝔽_q and *E*'/𝔽_q be elliptic curves with the same embedding degree *k*.
- Let $f : E \to E'$ be an isogeny with dual $\hat{f} : E' \to E$.
- Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ and $e' : \mathbb{G}'_1 \times \mathbb{G}'_2 \to \mathbb{G}_3$ be pairings on *E* and *E'* respectively.

- ► Let *E*/𝔽_q and *E*'/𝔽_q be elliptic curves with the same embedding degree *k*.
- Let $f : E \to E'$ be an isogeny with dual $\hat{f} : E' \to E$.
- Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ and $e' : \mathbb{G}'_1 \times \mathbb{G}'_2 \to \mathbb{G}_3$ be pairings on *E* and *E'* respectively.
- Then we get a commutative diagram:

$$\begin{array}{c} \mathbb{G}_1 \times \mathbb{G}'_2 \xrightarrow{f \times 1} \mathbb{G}'_1 \times \mathbb{G}'_2 \\ 1 \times \hat{f} \\ \mathbb{G}_1 \times \mathbb{G}_2 \xrightarrow{e} \mathbb{G}_3 \end{array}$$

- ► Let *E*/𝔽_q and *E*'/𝔽_q be elliptic curves with the same embedding degree *k*.
- Let $f : E \to E'$ be an isogeny with dual $\hat{f} : E' \to E$.
- Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_3$ and $e' : \mathbb{G}'_1 \times \mathbb{G}'_2 \to \mathbb{G}_3$ be pairings on *E* and *E'* respectively.
- Then we get a commutative diagram:

$$\begin{array}{c} \mathbb{G}_1 \times \mathbb{G}'_2 \xrightarrow{f \times 1} \mathbb{G}'_1 \times \mathbb{G}'_2 \\ 1 \times \hat{f} \\ \downarrow & \qquad \qquad \downarrow^{e'} \\ \mathbb{G}_1 \times \mathbb{G}_2 \xrightarrow{e} \mathbb{G}_3 \end{array}$$

• For $P \in \mathbb{G}_1$ and $Q \in \mathbb{G}'_2$:

$$e(P,\hat{f}(Q)) = e'(f(P),Q).$$

Protocol - setup and evaluation:

Protocol - setup and evaluation:

► Compute the composition of *l*-isogenies

and the dual \hat{f} .

Protocol - setup and evaluation:

► Compute the composition of *l*-isogenies

and the dual \hat{f} .

▶ Publish f, \hat{f} , groups $\mathbb{G}_1, \mathbb{G}_2 \subseteq E_0$, groups $\mathbb{G}'_1, \mathbb{G}'_2 \subseteq E_n$, pairings *e* and *e'*, a generator *P* of \mathbb{G}_1 , and f(P).

Protocol - setup and evaluation:

► Compute the composition of *l*-isogenies

and the dual \hat{f} .

▶ Publish f, \hat{f} , groups $\mathbb{G}_1, \mathbb{G}_2 \subseteq E_0$, groups $\mathbb{G}'_1, \mathbb{G}'_2 \subseteq E_n$, pairings e and e', a generator P of \mathbb{G}_1 , and f(P).

Protocol - verify:

Protocol - setup and evaluation:

► Compute the composition of *l*-isogenies

and the dual \hat{f} .

▶ Publish f, \hat{f} , groups $\mathbb{G}_1, \mathbb{G}_2 \subseteq E_0$, groups $\mathbb{G}'_1, \mathbb{G}'_2 \subseteq E_n$, pairings *e* and *e'*, a generator *P* of \mathbb{G}_1 , and f(P).

Protocol - verify:

• Choose $Q \in \mathbb{G}'_2$.

Protocol - setup and evaluation:

► Compute the composition of *l*-isogenies

and the dual \hat{f} .

▶ Publish f, \hat{f} , groups $\mathbb{G}_1, \mathbb{G}_2 \subseteq E_0$, groups $\mathbb{G}'_1, \mathbb{G}'_2 \subseteq E_n$, pairings *e* and *e'*, a generator *P* of \mathbb{G}_1 , and f(P).

Protocol - verify:

- Choose $Q \in \mathbb{G}'_2$.
- Check that $e(P, \hat{f}(Q)) = e'(f(P), Q)$.

► Proposal uses 2-isogenies of supersingular elliptic curves defined over F_p or F_{p²}; p is a well-chosen 1503-bit prime (for 128-bit security).

- ▶ Proposal uses 2-isogenies of supersingular elliptic curves defined over F_p or F_{p²}; p is a well-chosen 1503-bit prime (for 128-bit security).
- ► Over F_p: Setup takes 238 KB / 1416s, evaluation takes 2056s, verification takes 7s.

- ▶ Proposal uses 2-isogenies of supersingular elliptic curves defined over F_p or F_{p²}; p is a well-chosen 1503-bit prime (for 128-bit security).
- ► Over F_p: Setup takes 238 KB / 1416s, evaluation takes 2056s, verification takes 7s.
- ► Over F_{p²}: Setup takes 491KB / 2727s, evaluation takes 2817s, verification takes 7s.

De Feo, Masson, Petit, Sanso give the following comparison of their isogeny VDF with the literature:

VDF	Sequential Eval	Parallel Eval	Verify	Setup	Proof size
Modular square root	T	$T^{2/3}$	$T^{2/3}$	T	_
Univariate permutation polynomials ⁶	T^2	> T - o(T)	$\log(T)$	$\log(T)$	—
Wesolowski's VDF	$(1 + \frac{2}{\log{(T)}})T$	$(1 + \frac{2}{s \log{(T)}})T$	λ^4	λ^3	λ^3
Pietrzak's VDF	$\left(1 + \frac{2}{\sqrt{T}}\right)T$	$\begin{array}{c} (1 + \frac{2}{s \log{(T)}})T \\ (1 + \frac{2}{s \sqrt{T}})T \end{array}$	$\log(T)$	λ^3	$\log(T)$
This work	T	T	λ^4	$T\lambda^3$	_
This work (optimized)	T	T	λ^4	$T\log(\lambda)$	_

Table 1. VDF comparison—Asymptotic VDF comparison: T represents the delay factor, λ the security parameter, s the number of processors. For simplicity, we assume that T is super-polynomial in λ . All times are to be understood up to a (global across a line) constant factor.

Natural question: how efficiently can we do *n*-party key exchange?

• Easy CSIDH-style algorithm with n = 3:

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([**a**], [**a**] * *E*), ([**b**], [**b**] * *E*), and ([**c**], [**c**] * *E*).

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([a], [a] * *E*), ([b], [b] * *E*), and ([c], [c] * *E*).
 - Alice and Bob do a pairwise key exchange and find $AB = [\mathbf{ab}] * E$.

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([a], [a] * *E*), ([b], [b] * *E*), and ([c], [c] * *E*).
 - Alice and Bob do a pairwise key exchange and find AB = [**ab**] ∗ E.
 - ► They exchange *AB* with Chloe and find [**abc**] * *E*.

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([a], [a] * *E*), ([b], [b] * *E*), and ([c], [c] * *E*).
 - ► Alice and Bob do a pairwise key exchange and find AB = [**ab**] * E.
 - ► They exchange *AB* with Chloe and find [**abc**] * *E*.
- ► This requires 2 key exchanges.

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([a], [a] * *E*), ([b], [b] * *E*), and ([c], [c] * *E*).
 - ► Alice and Bob do a pairwise key exchange and find AB = [ab] * E.
 - ► They exchange *AB* with Chloe and find [**abc**] * *E*.
- This requires 2 key exchanges.
- ► The time and memory needed for this basic interactive *n*-party key exchange grows with *n*.

Natural question: how efficiently can we do *n*-party key exchange?

- Easy CSIDH-style algorithm with n = 3:
 - Alice, Bob, and Chloe compute ([a], [a] * *E*), ([b], [b] * *E*), and ([c], [c] * *E*).
 - ► Alice and Bob do a pairwise key exchange and find AB = [**ab**] * E.
 - ► They exchange *AB* with Chloe and find [**abc**] * *E*.
- This requires 2 key exchanges.
- ► The time and memory needed for this basic interactive *n*-party key exchange grows with *n*.

Open question: is there something much better for large *n*?

Natural question: how efficiently can we do *n*-party key exchange?

► For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.

- ► For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.

- ► For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.
- For base field, take $p = 2^a 3^b 5^c \cdot f \pm 1$.

- ► For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.
- For base field, take $p = 2^a 3^b 5^c \cdot f \pm 1$.
- As *n* increases, isogeny computations become slower (higher degree) – but not a big problem...

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which this is still secure?

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which this is still secure?

Open question: is there something much better for mediumlarge *n*?

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

 Awesome fact: There is an isomorphism of abelian varieties

$$[\mathbf{a}_1] * E \times \cdots \times [\mathbf{a}_n] * E \to [\mathbf{a}_1 \cdots \mathbf{a}_n] * E \times E^{n-1}.$$

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

 Awesome fact: There is an isomorphism of abelian varieties

$$[\mathbf{a}_1] * E \times \cdots \times [\mathbf{a}_n] * E \to [\mathbf{a}_1 \cdots \mathbf{a}_n] * E \times E^{n-1}.$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

 Awesome fact: There is an isomorphism of abelian varieties

$$[\mathbf{a}_1] * E \times \cdots \times [\mathbf{a}_n] * E \to [\mathbf{a}_1 \cdots \mathbf{a}_n] * E \times E^{n-1}.$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

Consequences:

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

 Awesome fact: There is an isomorphism of abelian varieties

$$[\mathbf{a}_1] * E \times \cdots \times [\mathbf{a}_n] * E \to [\mathbf{a}_1 \cdots \mathbf{a}_n] * E \times E^{n-1}.$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

Consequences:

- Efficient multiparty non-interactive key exchange.
- Verifiable random functions.
- ► World peace.
- ► etc.

• Choose an elliptic curve E/\mathbb{F}_q .

- Choose an elliptic curve E/\mathbb{F}_q .
- ► Each party chooses $[\mathbf{a}_i] \in cl(End(E))$ and publishes $E_i = [\mathbf{a}_i] * E$.

- Choose an elliptic curve E/\mathbb{F}_q .
- ► Each party chooses $[\mathbf{a}_i] \in cl(End(E))$ and publishes $E_i = [\mathbf{a}_i] * E$.
- ► Choose *j* ≠ *i*. The shared secret is the isomorphism invariant of

$$E_1 \times \cdots \times E_{j-1} \times [\mathbf{a}_i] * E_j \times E_{j+1} \times \cdots \times E_n,$$

where E_i is omitted from the product.

- Choose an elliptic curve E/\mathbb{F}_q .
- ► Each party chooses $[\mathbf{a}_i] \in cl(End(E))$ and publishes $E_i = [\mathbf{a}_i] * E$.
- ► Choose *j* ≠ *i*. The shared secret is the isomorphism invariant of

$$E_1 \times \cdots \times E_{j-1} \times [\mathbf{a}_i] * E_j \times E_{j+1} \times \cdots \times E_n,$$

where E_i is omitted from the product.

► Note that by Awesome Fact this is the isomorphism invariant of [∏ⁿ_{i=1} a_i] * Eⁿ⁻¹.

Thank you!