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Verifier

(Stolbunov; SeaSign: De Feo, Galbraith).
Prover Public
E,O = End(E),
ideals [1,...,l; € cl(O)
€1,...,6y € Z[_B,B]
random ¢ € {0,1}

S22, (al = (IT4°), ] < E)
c
N —

randomfi,...,fu € Z|_p,p

eyGen b] = S,
to, 9= 14
ID-c =ba—¢
([a] = E,ID, ID-c) check that
ID 22 ID-c * ([a] * E)

after k challenges ¢, an imposter prover succeeds with probability 2.
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» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

cl(O) is cyclic.

cl(O) is generated by an ideal of norm 3.

Elements of cl(O) easy to represent.

CSI-FiSh signatures take ~ 390ms/263B.

» For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

v

vYvyy

» For SIDH, more complicated as keys cannot be reused;
class group computation much harder
~+ signatures take ~ 3.7s/141KB.
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Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

» Example: repeated hashing
s — H(s) — H(H(s)) — -+ — H®™(s).
» Cannot be computed in time faster than T, even given
unlimited resources.
» The correctness of the output can be quickly verified.
» Non-example: repeated hashing.
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One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

» Natural sequential function f: compose (-isogenies ;

» How to quickly verify correctness of the output? Pairings.
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Interlude: Pairings 1/4

Let (N,p) =1, fix any basis E[N| = (R, S).
For any points P, Q € E[N] there exista, b, c,d € Z/NZ such that

P =aR +bS
Q =cR+4dS.
The form

dety(P, Q) = det < LCI Z ) =ad —bc € Z/nZ

is bilinear, non-degenerate, and independent from the choice of

basis.
(Slide stolen shamelessly from Luca De Feo)
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Theorem
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Let E/F; be a curve. There exists a Galois invariant bilinear map

e: E[N] x E[N] — un C Fy,

called the Weil pairing of order N, and a primitive N-th root of unity
¢ € F, such that

(P, Q) = (P,

The degree k of the smallest extension such that ¢ € ¥ is called the
embedding degree of the pairing.

(Slide stolen shamelessly from Luca De Feo)
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Can think of it as a map of groups
e: G x Gy — Gs.

There exist efficiently computable pairings with:
» G1 C E(IFy) of prime order.
> Gz C E(Fy) of prime order

(remember k is the embedding degree).

» G3CF ;‘k of prime order.
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Interlude: Pairings 4/4

» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.

Letf : E — E' be an isogeny with dual f : E' — E.

Lete: Gy x G, — Gz and ¢ : G} x G/, — G3 be pairings on
E and E’ respectively.

v

v

v

Then we get a commutative diagram:

Gle’zﬁG’l x G}

o)

G1 X Gz G?,

e

v

For P € Gy and Q € G:

e(P.f(Q)) = ¢ (f(P), Q).
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Protocol - setup and evaluation:

» Compute the composition of /-isogenies

EO ®1 El ¥2 . ®n En
f
and the dual f .

> Publishf,f, groups G1, G, C Ey, groups G, G, C E,,
pairings e and ¢/, a generator P of G1, and f(P).

Protocol - verify:
» Choose Q € Gj.
» Check that e(P,f(Q)) = ¢'(f(P), Q).
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» Proposal uses 2-isogenies of supersingular elliptic curves
defined over I, or IF2; p is a well-chosen 1503-bit prime
(for 128-bit security).

» Over F,: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

» Over sz: Setup takes 491KB / 2727s, evaluation takes
2817s, verification takes 7s.
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De Feo, Masson, Petit, Sanso give the following comparison of
their isogeny VDF with the literature:

VDF Sequential Parallel Verify Setup Proof
Eval Eval size
Modular square root T s R T —
Univariate permutation T? >T —o(T) log(T) log(T) —_
polynomials®
Wesolowski’s VDF L+ 27T U+ 2T At A3 A3
Pietrzak’s VDF (1+ %}T 1+ ﬁF)T log (T7) A log (T)
This work T T M A -
This work (optimized) T T A Tlog(X) —

Table 1. VDF comparison—Asymptotic VDF comparison: T' represents the delay
factor, A the security parameter, s the number of processors. For simplicity, we assume
that 7' is super-polynomial in A. All times are to be understood up to a (global across
a line) constant factor.
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Natural question: how efficiently can we do n-party key
exchange?

» For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,
Soukharev), need to change parameter choices.

» With three parties, Alice computes a chain of 2-isogenies,
Bob 3-isogenies, and Chloe 5-isogenies.

» For base field, take p = 273°5¢ . f + 1.

» As n increases, isogeny computations become slower
(higher degree) — but not a big problem...
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For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

Open question: is there something much better for medium-
large n?
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The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

» Awesome fact: There is an isomorphism of abelian
varieties

[a1] *E x --- X [ay] * E — [ay ---a,] * E x E""L.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:

v

Efficient multiparty non-interactive key exchange.
» Verifiable random functions.

» World peace.
>

etc.
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» Choose an elliptic curve E/F,.

» Each party chooses [a;| € cl(End(E)) and publishes
Ei = [ai] x E.

» Choose j # i. The shared secret is the isomorphism
invariant of

E1><---><E]-_1><[ai]*E]-><E]-+1x---En,

where E; is omitted from the product.

» Note that by Awesome Fact this is the isomorphism
invariant of [[[, a;] * E"~ L.
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Thank you!



