
Protocols: continued

Chloe Martindale

Technische Universiteit Eindhoven

Birmingham, UK, 16 September 2019

Slides at www.martindale.info/talks

Signatures 1/4
Application 1 of (C)SIDH: Digital signatures.

Signer Verifier

msg

1 / 19

Signatures 1/4
Application 1 of (C)SIDH: Digital signatures.

Signer Verifier

msg

(sk,pk)← KeyGen

1 / 19

Signatures 1/4
Application 1 of (C)SIDH: Digital signatures.

Signer Verifier

msg

(sk,pk)← KeyGen

σ = Sign(sk,msg) σ,pk Verify(pk,msg, σ)

1 / 19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Prover Verifier

msg, H

KeyGen−−−−→ (sk, pk)

sk, ran1
magic
−−−→ ID

c := H(||msg) c compute challenge c

sk, ID, c, ran2
magic
−−−→ ID-c

(pk, ID, ID-c) Verify(pk, ID, c, ID-c)

2 / 19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Signer Verifier

msg, H

KeyGen−−−−→ (sk, pk)

sk, ran1
magic
−−−→ ID

c := H(ID||msg) c compute challenge c

sk, ID, c, ran2
magic
−−−→ ID-c

(pk, ID, ID-c) Verify(pk, ID,H(ID||msg), ID-c)

2 / 19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Prover Verifier

msg, H

KeyGen−−−−→ (sk, pk)

sk, ran1
magic
−−−→ ID

c := H(||msg) c compute challenge c

sk, ID, c, ran2
magic
−−−→ ID-c

(pk, ID, ID-c) Verify(pk, ID, c, ID-c)

2 / 19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier

E,O = End(E),

ideals l1, . . . , ln ∈ cl(O)

· · · after k challenges c, an imposter prover succeeds with probability 2−k.

3 / 19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier

E,O = End(E),

ideals l1, . . . , ln ∈ cl(O)

e1, . . . , en ∈ Z[−B,B]

KeyGen−−−−→ ([a] = [
∏

li
ei], [a] ∗ E)

· · · after k challenges c, an imposter prover succeeds with probability 2−k.

3 / 19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier

E,O = End(E),

ideals l1, . . . , ln ∈ cl(O)

e1, . . . , en ∈ Z[−B,B]

KeyGen−−−−→ ([a] = [
∏

li
ei], [a] ∗ E)

c random c ∈ {0, 1}

random f1, . . . , fn ∈ Z[−B,B]

KeyGen−−−−→
{

[b] = [
∏

li
fi],

ID = [b] ∗ E

ID-c = ba−c

· · · after k challenges c, an imposter prover succeeds with probability 2−k.

3 / 19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier

E,O = End(E),

ideals l1, . . . , ln ∈ cl(O)

e1, . . . , en ∈ Z[−B,B]

KeyGen−−−−→ ([a] = [
∏

li
ei], [a] ∗ E)

c random c ∈ {0, 1}

random f1, . . . , fn ∈ Z[−B,B]

KeyGen−−−−→
{

[b] = [
∏

li
fi],

ID = [b] ∗ E

ID-c = ba−c

([a] ∗ E, ID, ID-c) check that

ID ∼= ID-c ∗ ([ac] ∗ E)

· · · after k challenges c, an imposter prover succeeds with probability 2−k.

3 / 19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier

E,O = End(E),

ideals l1, . . . , ln ∈ cl(O)

e1, . . . , en ∈ Z[−B,B]

KeyGen−−−−→ ([a] = [
∏

li
ei], [a] ∗ E)

c random c ∈ {0, 1}

random f1, . . . , fn ∈ Z[−B,B]

KeyGen−−−−→
{

[b] = [
∏

li
fi],

ID = [b] ∗ E

ID-c = ba−c

([a] ∗ E, ID, ID-c) check that

ID ∼= ID-c ∗ ([ac] ∗ E)

· · · after k challenges c, an imposter prover succeeds with probability 2−k.
3 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?

I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).

I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class
group cl(O) for CSIDH-512:

I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:

I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.

I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.

I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.

I CSI-FiSh signatures take ≈ 390ms/263B.
I For higher security levels (NIST 3, 5), computing the entire

class group become impractical.
I For SIDH, more complicated as keys cannot be reused;

class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Signatures 4/4

I Big question: how do you communicate ID-c = ba−1

without leaking a?
I Big answer: in terms of generators of class group cl(O).
I CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class

group cl(O) for CSIDH-512:
I cl(O) is cyclic.
I cl(O) is generated by an ideal of norm 3.
I Elements of cl(O) easy to represent.
I CSI-FiSh signatures take ≈ 390ms/263B.

I For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

I For SIDH, more complicated as keys cannot be reused;
class group computation much harder
 signatures take ≈ 3.7s/141KB.

4 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.
I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.
I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.
I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.
I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.

I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
f : X→ Y that:

I Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

I Example: repeated hashing
s→ H(s)→ H(H(s))→ · · · → H(n)(s).

I Cannot be computed in time faster than T, even given
unlimited resources.

I The correctness of the output can be quickly verified.
I Non-example: repeated hashing.

5 / 19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs:

Isogenies! (De Feo, Masson, Petit, Sanso)

I Natural sequential function f : compose `-isogenies ϕi

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

I How to quickly verify correctness of the output? Pairings.

6 / 19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

I Natural sequential function f : compose `-isogenies ϕi

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

I How to quickly verify correctness of the output? Pairings.

6 / 19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

I Natural sequential function f : compose `-isogenies ϕi

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

I How to quickly verify correctness of the output? Pairings.

6 / 19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

I Natural sequential function f : compose `-isogenies ϕi

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

I How to quickly verify correctness of the output?

Pairings.

6 / 19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

I Natural sequential function f : compose `-isogenies ϕi

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

I How to quickly verify correctness of the output? Pairings.

6 / 19

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis E[N] = 〈R,S〉.

For any points P,Q ∈ E[N] there exist a, b, c, d ∈ Z/NZ such that

P = aR + bS

Q = cR + dS.

The form

detN(P,Q) = det
(

a b
c d

)
= ad− bc ∈ Z/nZ

is bilinear, non-degenerate, and independent from the choice of
basis.

(Slide stolen shamelessly from Luca De Feo)

7 / 19

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis E[N] = 〈R,S〉.
For any points P,Q ∈ E[N] there exist a, b, c, d ∈ Z/NZ such that

P = aR + bS

Q = cR + dS.

The form

detN(P,Q) = det
(

a b
c d

)
= ad− bc ∈ Z/nZ

is bilinear, non-degenerate, and independent from the choice of
basis.

(Slide stolen shamelessly from Luca De Feo)

7 / 19

Interlude: Pairings 1/4

Let (N, p) = 1, fix any basis E[N] = 〈R,S〉.
For any points P,Q ∈ E[N] there exist a, b, c, d ∈ Z/NZ such that

P = aR + bS

Q = cR + dS.

The form

detN(P,Q) = det
(

a b
c d

)
= ad− bc ∈ Z/nZ

is bilinear, non-degenerate, and independent from the choice of
basis.
(Slide stolen shamelessly from Luca De Feo)

7 / 19

Interlude: Pairings 2/4

Theorem
Let E/Fq be a curve. There exists a Galois invariant bilinear map

e : E[N]× E[N]→ µN ⊆ Fq,

called the Weil pairing of order N, and a primitive N-th root of unity
ζ ∈ Fq such that

e(P,Q) = ζdetN(P,Q).

The degree k of the smallest extension such that ζ ∈ Fqk is called the
embedding degree of the pairing.

(Slide stolen shamelessly from Luca De Feo)

8 / 19

Interlude: Pairings 2/4

Theorem
Let E/Fq be a curve. There exists a Galois invariant bilinear map

e : E[N]× E[N]→ µN ⊆ Fq,

called the Weil pairing of order N, and a primitive N-th root of unity
ζ ∈ Fq such that

e(P,Q) = ζdetN(P,Q).

The degree k of the smallest extension such that ζ ∈ Fqk is called the
embedding degree of the pairing.
(Slide stolen shamelessly from Luca De Feo)

8 / 19

Interlude: Pairings 3/4

For any elliptic curve E/Fq, we have the Weil pairing

e : E[N]× E[N]→ µN ⊆ Fq.

Can think of it as a map of groups

e : G1 ×G2 → G3.

There exist efficiently computable pairings with:
I G1 ⊆ E(Fq) of prime order.
I G2 ⊆ E(Fqk) of prime order

(remember k is the embedding degree).
I G3 ⊆ F∗qk of prime order.

9 / 19

Interlude: Pairings 3/4

For any elliptic curve E/Fq, we have the Weil pairing

e : E[N]× E[N]→ µN ⊆ Fq.

Can think of it as a map of groups

e : G1 ×G2 → G3.

There exist efficiently computable pairings with:
I G1 ⊆ E(Fq) of prime order.
I G2 ⊆ E(Fqk) of prime order

(remember k is the embedding degree).
I G3 ⊆ F∗qk of prime order.

9 / 19

Interlude: Pairings 3/4

For any elliptic curve E/Fq, we have the Weil pairing

e : E[N]× E[N]→ µN ⊆ Fq.

Can think of it as a map of groups

e : G1 ×G2 → G3.

There exist efficiently computable pairings with:
I G1 ⊆ E(Fq) of prime order.

I G2 ⊆ E(Fqk) of prime order
(remember k is the embedding degree).

I G3 ⊆ F∗qk of prime order.

9 / 19

Interlude: Pairings 3/4

For any elliptic curve E/Fq, we have the Weil pairing

e : E[N]× E[N]→ µN ⊆ Fq.

Can think of it as a map of groups

e : G1 ×G2 → G3.

There exist efficiently computable pairings with:
I G1 ⊆ E(Fq) of prime order.
I G2 ⊆ E(Fqk) of prime order

(remember k is the embedding degree).

I G3 ⊆ F∗qk of prime order.

9 / 19

Interlude: Pairings 3/4

For any elliptic curve E/Fq, we have the Weil pairing

e : E[N]× E[N]→ µN ⊆ Fq.

Can think of it as a map of groups

e : G1 ×G2 → G3.

There exist efficiently computable pairings with:
I G1 ⊆ E(Fq) of prime order.
I G2 ⊆ E(Fqk) of prime order

(remember k is the embedding degree).
I G3 ⊆ F∗qk of prime order.

9 / 19

Interlude: Pairings 4/4
I Let E/Fq and E′/Fq be elliptic curves with the same

embedding degree k.

I Let f : E→ E′ be an isogeny with dual f̂ : E′ → E.
I Let e : G1 ×G2 → G3 and e′ : G′1 ×G′2 → G3 be pairings on

E and E′ respectively.
I Then we get a commutative diagram:

G1 ×G′2
f×1 //

1×f̂
��

G′1 ×G′2
e′
��

G1 ×G2 e
// G3

I For P ∈ G1 and Q ∈ G′2:

e(P, f̂ (Q)) = e′(f (P),Q).

10 / 19

Interlude: Pairings 4/4
I Let E/Fq and E′/Fq be elliptic curves with the same

embedding degree k.
I Let f : E→ E′ be an isogeny with dual f̂ : E′ → E.

I Let e : G1 ×G2 → G3 and e′ : G′1 ×G′2 → G3 be pairings on
E and E′ respectively.

I Then we get a commutative diagram:

G1 ×G′2
f×1 //

1×f̂
��

G′1 ×G′2
e′
��

G1 ×G2 e
// G3

I For P ∈ G1 and Q ∈ G′2:

e(P, f̂ (Q)) = e′(f (P),Q).

10 / 19

Interlude: Pairings 4/4
I Let E/Fq and E′/Fq be elliptic curves with the same

embedding degree k.
I Let f : E→ E′ be an isogeny with dual f̂ : E′ → E.
I Let e : G1 ×G2 → G3 and e′ : G′1 ×G′2 → G3 be pairings on

E and E′ respectively.

I Then we get a commutative diagram:

G1 ×G′2
f×1 //

1×f̂
��

G′1 ×G′2
e′
��

G1 ×G2 e
// G3

I For P ∈ G1 and Q ∈ G′2:

e(P, f̂ (Q)) = e′(f (P),Q).

10 / 19

Interlude: Pairings 4/4
I Let E/Fq and E′/Fq be elliptic curves with the same

embedding degree k.
I Let f : E→ E′ be an isogeny with dual f̂ : E′ → E.
I Let e : G1 ×G2 → G3 and e′ : G′1 ×G′2 → G3 be pairings on

E and E′ respectively.
I Then we get a commutative diagram:

G1 ×G′2
f×1 //

1×f̂
��

G′1 ×G′2
e′
��

G1 ×G2 e
// G3

I For P ∈ G1 and Q ∈ G′2:

e(P, f̂ (Q)) = e′(f (P),Q).

10 / 19

Interlude: Pairings 4/4
I Let E/Fq and E′/Fq be elliptic curves with the same

embedding degree k.
I Let f : E→ E′ be an isogeny with dual f̂ : E′ → E.
I Let e : G1 ×G2 → G3 and e′ : G′1 ×G′2 → G3 be pairings on

E and E′ respectively.
I Then we get a commutative diagram:

G1 ×G′2
f×1 //

1×f̂
��

G′1 ×G′2
e′
��

G1 ×G2 e
// G3

I For P ∈ G1 and Q ∈ G′2:

e(P, f̂ (Q)) = e′(f (P),Q).

10 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .
I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,

pairings e and e′, a generator P of G1, and f (P).
Protocol - verify:

I Choose Q ∈ G′2.
I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:
I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .

I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,
pairings e and e′, a generator P of G1, and f (P).

Protocol - verify:
I Choose Q ∈ G′2.
I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:
I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .
I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,

pairings e and e′, a generator P of G1, and f (P).

Protocol - verify:
I Choose Q ∈ G′2.
I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:
I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .
I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,

pairings e and e′, a generator P of G1, and f (P).
Protocol - verify:

I Choose Q ∈ G′2.
I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:
I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .
I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,

pairings e and e′, a generator P of G1, and f (P).
Protocol - verify:

I Choose Q ∈ G′2.

I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:
I Compute the composition of `-isogenies

E0
ϕ1 //

f

::E1
ϕ2 // · · · ϕn // En

and the dual f̂ .
I Publish f , f̂ , groups G1,G2 ⊆ E0, groups G′1,G′2 ⊆ En,

pairings e and e′, a generator P of G1, and f (P).
Protocol - verify:

I Choose Q ∈ G′2.
I Check that e(P, f̂ (Q)) = e′(f (P),Q).

11 / 19

Verifiable Delay Functions: Slide 4/5

I Proposal uses 2-isogenies of supersingular elliptic curves
defined over Fp or Fp2 ; p is a well-chosen 1503-bit prime
(for 128-bit security).

I Over Fp: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

I Over Fp2 : Setup takes 491KB / 2727s, evaluation takes
2817s, verification takes 7s.

12 / 19

Verifiable Delay Functions: Slide 4/5

I Proposal uses 2-isogenies of supersingular elliptic curves
defined over Fp or Fp2 ; p is a well-chosen 1503-bit prime
(for 128-bit security).

I Over Fp: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

I Over Fp2 : Setup takes 491KB / 2727s, evaluation takes
2817s, verification takes 7s.

12 / 19

Verifiable Delay Functions: Slide 4/5

I Proposal uses 2-isogenies of supersingular elliptic curves
defined over Fp or Fp2 ; p is a well-chosen 1503-bit prime
(for 128-bit security).

I Over Fp: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

I Over Fp2 : Setup takes 491KB / 2727s, evaluation takes
2817s, verification takes 7s.

12 / 19

Verifiable Delay Functions: Slide 5/5
De Feo, Masson, Petit, Sanso give the following comparison of
their isogeny VDF with the literature:

13 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.
I They exchange AB with Chloe and find [abc] ∗ E.

I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:

I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),
and ([c], [c] ∗ E).

I Alice and Bob do a pairwise key exchange and find
AB = [ab] ∗ E.

I They exchange AB with Chloe and find [abc] ∗ E.
I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).

I Alice and Bob do a pairwise key exchange and find
AB = [ab] ∗ E.

I They exchange AB with Chloe and find [abc] ∗ E.
I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.

I They exchange AB with Chloe and find [abc] ∗ E.
I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.
I They exchange AB with Chloe and find [abc] ∗ E.

I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.
I They exchange AB with Chloe and find [abc] ∗ E.

I This requires 2 key exchanges.

I The time and memory needed for this basic interactive
n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.
I They exchange AB with Chloe and find [abc] ∗ E.

I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

I Easy CSIDH-style algorithm with n = 3:
I Alice, Bob, and Chloe compute ([a], [a] ∗ E), ([b], [b] ∗ E),

and ([c], [c] ∗ E).
I Alice and Bob do a pairwise key exchange and find

AB = [ab] ∗ E.
I They exchange AB with Chloe and find [abc] ∗ E.

I This requires 2 key exchanges.
I The time and memory needed for this basic interactive

n-party key exchange grows with n.

Open question: is there something much better for large n?

14 / 19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

I For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,

Soukharev), need to change parameter choices.
I With three parties, Alice computes a chain of 2-isogenies,

Bob 3-isogenies, and Chloe 5-isogenies.
I For base field, take p = 2a3b5c · f ± 1.
I As n increases, isogeny computations become slower

(higher degree) – but not a big problem...

15 / 19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

I For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,

Soukharev), need to change parameter choices.

I With three parties, Alice computes a chain of 2-isogenies,
Bob 3-isogenies, and Chloe 5-isogenies.

I For base field, take p = 2a3b5c · f ± 1.
I As n increases, isogeny computations become slower

(higher degree) – but not a big problem...

15 / 19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

I For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,

Soukharev), need to change parameter choices.
I With three parties, Alice computes a chain of 2-isogenies,

Bob 3-isogenies, and Chloe 5-isogenies.

I For base field, take p = 2a3b5c · f ± 1.
I As n increases, isogeny computations become slower

(higher degree) – but not a big problem...

15 / 19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

I For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,

Soukharev), need to change parameter choices.
I With three parties, Alice computes a chain of 2-isogenies,

Bob 3-isogenies, and Chloe 5-isogenies.
I For base field, take p = 2a3b5c · f ± 1.

I As n increases, isogeny computations become slower
(higher degree) – but not a big problem...

15 / 19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

I For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,

Soukharev), need to change parameter choices.
I With three parties, Alice computes a chain of 2-isogenies,

Bob 3-isogenies, and Chloe 5-isogenies.
I For base field, take p = 2a3b5c · f ± 1.
I As n increases, isogeny computations become slower

(higher degree) – but not a big problem...

15 / 19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

Open question: is there something much better for medium-
large n?

16 / 19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

Open question: is there something much better for medium-
large n?

16 / 19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

Open question: is there something much better for medium-
large n?

16 / 19

Multiparty key exchange: Slide 4/5
The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

I Awesome fact: There is an isomorphism of abelian
varieties

[a1] ∗ E× · · · × [an] ∗ E→ [a1 · · · an] ∗ E× En−1.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:
I Efficient multiparty non-interactive key exchange.
I Verifiable random functions.
I World peace.
I etc.

17 / 19

Multiparty key exchange: Slide 4/5
The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

I Awesome fact: There is an isomorphism of abelian
varieties

[a1] ∗ E× · · · × [an] ∗ E→ [a1 · · · an] ∗ E× En−1.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:
I Efficient multiparty non-interactive key exchange.
I Verifiable random functions.
I World peace.
I etc.

17 / 19

Multiparty key exchange: Slide 4/5
The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

I Awesome fact: There is an isomorphism of abelian
varieties

[a1] ∗ E× · · · × [an] ∗ E→ [a1 · · · an] ∗ E× En−1.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:
I Efficient multiparty non-interactive key exchange.
I Verifiable random functions.
I World peace.
I etc.

17 / 19

Multiparty key exchange: Slide 4/5
The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

I Awesome fact: There is an isomorphism of abelian
varieties

[a1] ∗ E× · · · × [an] ∗ E→ [a1 · · · an] ∗ E× En−1.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:

I Efficient multiparty non-interactive key exchange.
I Verifiable random functions.
I World peace.
I etc.

17 / 19

Multiparty key exchange: Slide 4/5
The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

I Awesome fact: There is an isomorphism of abelian
varieties

[a1] ∗ E× · · · × [an] ∗ E→ [a1 · · · an] ∗ E× En−1.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:
I Efficient multiparty non-interactive key exchange.
I Verifiable random functions.
I World peace.
I etc.

17 / 19

Dreaming from isogenies: n-way NIKE

I Choose an elliptic curve E/Fq.

I Each party chooses [ai] ∈ cl(End(E)) and publishes
Ei = [ai] ∗ E.

I Choose j 6= i. The shared secret is the isomorphism
invariant of

E1 × · · · × Ej−1 × [ai] ∗ Ej × Ej+1 × · · ·En,

where Ei is omitted from the product.
I Note that by Awesome Fact this is the isomorphism

invariant of [
∏n

i=1 ai] ∗ En−1.

18 / 19

Dreaming from isogenies: n-way NIKE

I Choose an elliptic curve E/Fq.
I Each party chooses [ai] ∈ cl(End(E)) and publishes

Ei = [ai] ∗ E.

I Choose j 6= i. The shared secret is the isomorphism
invariant of

E1 × · · · × Ej−1 × [ai] ∗ Ej × Ej+1 × · · ·En,

where Ei is omitted from the product.
I Note that by Awesome Fact this is the isomorphism

invariant of [
∏n

i=1 ai] ∗ En−1.

18 / 19

Dreaming from isogenies: n-way NIKE

I Choose an elliptic curve E/Fq.
I Each party chooses [ai] ∈ cl(End(E)) and publishes

Ei = [ai] ∗ E.
I Choose j 6= i. The shared secret is the isomorphism

invariant of

E1 × · · · × Ej−1 × [ai] ∗ Ej × Ej+1 × · · ·En,

where Ei is omitted from the product.

I Note that by Awesome Fact this is the isomorphism
invariant of [

∏n
i=1 ai] ∗ En−1.

18 / 19

Dreaming from isogenies: n-way NIKE

I Choose an elliptic curve E/Fq.
I Each party chooses [ai] ∈ cl(End(E)) and publishes

Ei = [ai] ∗ E.
I Choose j 6= i. The shared secret is the isomorphism

invariant of

E1 × · · · × Ej−1 × [ai] ∗ Ej × Ej+1 × · · ·En,

where Ei is omitted from the product.
I Note that by Awesome Fact this is the isomorphism

invariant of [
∏n

i=1 ai] ∗ En−1.

18 / 19

Thank you!

19 / 19

