Protocols: continued

Chloe Martindale

Technische Universiteit Eindhoven
Birmingham, UK, 16 September 2019

Slides at www.martindale.info/talks

Signatures $1 / 4$

Application 1 of (C)SIDH: Digital signatures.

Signer	Verifier

Signatures $1 / 4$

Application 1 of (C)SIDH: Digital signatures.

Signer
Verifier
msg
$($ sk, pk) \leftarrow KeyGen

Signatures 1/4

Application 1 of (C)SIDH: Digital signatures.

$$
\begin{aligned}
& \text { Signer } \\
& (\mathrm{ms}, \mathrm{pk}) \leftarrow \text { KeyGen } \\
& \sigma=\text { Sign(sk, msg }) \xrightarrow[\sigma, \mathrm{pk}]{ } \text { Verify }(\mathrm{pk}, \mathrm{msg}, \sigma)
\end{aligned}
$$

Signatures $2 / 4$

One way to build signatures: Identification scheme (simplified here)
Prover

$$
\begin{aligned}
& \xrightarrow{\text { KeyGen }}(\mathrm{sk}, \mathrm{pk}) \\
& \text { sk, } \mathrm{ran}_{1} \xrightarrow{\text { magic }} \mathrm{ID} \\
& \text { sk, ID, c, } \operatorname{ran}_{2} \xrightarrow{\text { magic } I D-c} \begin{array}{c}
\stackrel{c}{\longleftrightarrow} \text { compute challenge } c \\
(\mathrm{pk}, \mathrm{ID}, \mathrm{ID}-\mathrm{c}) \\
\text { Verify (pk, ID, c, ID-c) }
\end{array}
\end{aligned}
$$

Signatures $2 / 4$

One way to build signatures: Identification scheme (simplified here)
Signer

Verifier
msg, H

$$
\begin{aligned}
& \xrightarrow{\text { KeyGen }}(\mathrm{sk}, \mathrm{pk}) \\
& \text { sk, ran }{ }_{1} \xrightarrow{\text { magic }} \mathrm{ID} \\
& c:=H(\mathrm{ID} \| \mathrm{msg})
\end{aligned}
$$

sk, ID, $c, \mathrm{ran}_{2} \xrightarrow{\text { magic }}$ ID-c

$$
(\mathrm{pk}, \mathrm{ID}, \mathrm{ID}-\mathrm{c}) \quad \operatorname{Verify}(\mathrm{pk}, \mathrm{ID}, \mathrm{H}(\mathrm{ID} \| \mathrm{msg}), \mathrm{ID}-\mathrm{c})
$$

Signatures $2 / 4$

One way to build signatures: Identification scheme (simplified here)
Prover

$$
\begin{aligned}
& \xrightarrow{\text { KeyGen }}(\mathrm{sk}, \mathrm{pk}) \\
& \text { sk, } \mathrm{ran}_{1} \xrightarrow{\text { magic }} \mathrm{ID} \\
& \text { sk, ID, c, } \operatorname{ran}_{2} \xrightarrow{\text { magic } I D-c} \begin{array}{c}
\stackrel{c}{\longleftrightarrow} \text { compute challenge } c \\
(\mathrm{pk}, \mathrm{ID}, \mathrm{ID}-\mathrm{c}) \\
\text { Verify (pk, ID, c, ID-c) }
\end{array}
\end{aligned}
$$

Signatures 3/4

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

Prover	Public	Verifier
$E, \mathcal{O}=\operatorname{End}(E)$,		
ideals $\mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n} \in \operatorname{cl}(\mathcal{O})$		

Signatures 3/4

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

$$
\left.\begin{array}{cc}
\begin{array}{c}
\text { Prover } \\
E, \mathcal{O}=\operatorname{End}(E),
\end{array} & \text { Verifier } \\
\text { ideals } \mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n} \in \operatorname{cl}(\mathcal{O})
\end{array}\right] \begin{aligned}
& e_{1}, \ldots, e_{n} \in \mathbb{Z}_{[-B, B]} \\
& \xrightarrow{\text { KeyGen }}\left([\mathbf{a}]=\left[\prod \mathfrak{l}_{i}^{e_{i}}\right],[\mathbf{a}] * E\right)
\end{aligned}
$$

Signatures 3/4

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

Prover

Public
Verifier

$$
\begin{gathered}
E, \mathcal{O}=\operatorname{End}(E) \\
\text { ideals } \mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n} \in \operatorname{cl}(\mathcal{O})
\end{gathered}
$$

$$
e_{1}, \ldots, e_{n} \in \mathbb{Z}_{[-B, B]}
$$

$$
\xrightarrow{\text { KeyGen }}\left([\mathbf{a}]=\left[\Pi \mathfrak{r}_{i}^{e_{i}}\right],[\mathbf{a}] * E\right)
$$

random $f_{1}, \ldots, f_{n} \in \mathbb{Z}_{[-B, B]}$

$$
\xrightarrow{\text { KeyGen }\left\{\begin{array}{l}
{[\mathbf{b}]=\left[\prod \mathrm{l}_{i} f_{i}\right]} \\
\mathrm{iD}=[\mathbf{b}] * E
\end{array}\right.} \begin{gathered}
\text { ID-c }=\mathbf{b a}^{-c}
\end{gathered}
$$

Signatures 3/4

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

$$
\begin{aligned}
& \text { Prover } \\
& \text { Public } \\
& \text { Verifier } \\
& E, \mathcal{O}=\operatorname{End}(E) \text {, } \\
& \text { ideals } \mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n} \in \operatorname{cl}(\mathcal{O}) \\
& e_{1}, \ldots, e_{n} \in \mathbb{Z}_{[-B, B]} \\
& \xrightarrow{\text { KeyGen }}\left([\mathbf{a}]=\left[\Pi \mathfrak{r}_{i}^{{ }_{e}}\right],[\mathbf{a}] * E\right) \\
& \text { c } \\
& \text { random } f_{1}, \ldots, f_{n} \in \mathbb{Z}_{[-B, B]} \\
& \xrightarrow{\text { KeyGen }}\left\{\begin{array}{l}
{[\mathbf{b}]=\left[\prod_{i} \mathfrak{l}_{i} f_{i},\right.} \\
\mathrm{ID}=[\mathbf{b}] * E
\end{array}\right. \\
& \text { ID-c }=\mathbf{b a} \mathbf{a}^{-c} \\
& ([\mathrm{a}] * E, \mathrm{ID}, \mathrm{ID}-\mathrm{C}) \longrightarrow \text { check that } \\
& \mathrm{ID} \cong \mathrm{ID}-\mathrm{C} *\left(\left[\mathrm{a}^{c}\right] * E\right)
\end{aligned}
$$

Signatures 3/4

One way to build signatures: Isogeny identification scheme (Stolbunov; SeaSign: De Feo, Galbraith).

$$
\begin{aligned}
& \text { Prover } \\
& \text { Public } \\
& \text { Verifier } \\
& E, \mathcal{O}=\operatorname{End}(E) \text {, } \\
& \text { ideals } \mathfrak{l}_{1}, \ldots, \mathfrak{l}_{n} \in \operatorname{cl}(\mathcal{O}) \\
& e_{1}, \ldots, e_{n} \in \mathbb{Z}_{[-B, B]} \\
& \xrightarrow{\text { KeyGen }}\left([\mathbf{a}]=\left[\Pi \mathfrak{r}_{i}^{e_{i}}\right],[\mathbf{a}] * E\right) \\
& \text { c } \\
& \text { random } f_{1}, \ldots, f_{n} \in \mathbb{Z}_{[-B, B]} \\
& \xrightarrow{\text { KeyGen }}\left\{\begin{array}{l}
{[\mathbf{b}]=\left[\prod_{i} \mathfrak{l}_{i} f_{i}\right],} \\
i \mathrm{D}=[\mathrm{b}] * E
\end{array}\right. \\
& \text { ID-c }=\mathrm{ba}^{-c} \\
& ([\mathrm{a}] * E, \mathrm{ID}, \mathrm{ID}-\mathrm{c}) \longrightarrow \text { check that } \\
& \mathrm{ID} \cong \mathrm{ID}-\mathrm{c} *\left(\left[\mathrm{a}^{c}\right] * E\right)
\end{aligned}
$$

\cdots after k challenges c, an imposter prover succeeds with probability 2^{-k}.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class $\operatorname{group} \operatorname{cl}(\mathcal{O})$.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class $\operatorname{group} \operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class $\operatorname{group} \operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class group $\operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.
- $\operatorname{cl}(\mathcal{O})$ is generated by an ideal of norm 3 .

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class group $\operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.
- $\operatorname{cl}(\mathcal{O})$ is generated by an ideal of norm 3 .
- Elements of $\operatorname{cl}(\mathcal{O})$ easy to represent.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class group $\operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.
- $\operatorname{cl}(\mathcal{O})$ is generated by an ideal of norm 3 .
- Elements of $\operatorname{cl}(\mathcal{O})$ easy to represent.
- CSI-FiSh signatures take $\approx 390 \mathrm{~ms} / 263 B$.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class group $\operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.
- $\operatorname{cl}(\mathcal{O})$ is generated by an ideal of norm 3 .
- Elements of $\operatorname{cl}(\mathcal{O})$ easy to represent.
- CSI-FiSh signatures take $\approx 390 \mathrm{~ms} / 263 B$.
- For higher security levels (NIST 3, 5), computing the entire class group become impractical.

Signatures $4 / 4$

- Big question: how do you communicate ID-c $=\mathbf{b a}^{-1}$ without leaking a?
- Big answer: in terms of generators of class group $\operatorname{cl}(\mathcal{O})$.
- CSI-FiSh (Beullens, Kleinjung, Vercauteren): computed the class group $\operatorname{cl}(\mathcal{O})$ for CSIDH-512:
- $\operatorname{cl}(\mathcal{O})$ is cyclic.
- $\operatorname{cl}(\mathcal{O})$ is generated by an ideal of norm 3 .
- Elements of $\mathrm{cl}(\mathcal{O})$ easy to represent.
- CSI-FiSh signatures take $\approx 390 \mathrm{~ms} / 263 B$.
- For higher security levels (NIST 3, 5), computing the entire class group become impractical.
- For SIDH, more complicated as keys cannot be reused; class group computation much harder
\rightsquigarrow signatures take $\approx 3.7 \mathrm{~s} / 141 \mathrm{~KB}$.

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function $f: X \rightarrow Y$ that:

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
$f: X \rightarrow Y$ that:

- Is computed in n sequential steps, each of which takes time t. The total time $T=n t$ is the delay factor.

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
$f: X \rightarrow Y$ that:

- Is computed in n sequential steps, each of which takes time t. The total time $T=n t$ is the delay factor.
- Example: repeated hashing

$$
s \rightarrow H(s) \rightarrow H(H(s)) \rightarrow \cdots \rightarrow H^{(n)}(s) .
$$

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
$f: X \rightarrow Y$ that:

- Is computed in n sequential steps, each of which takes time t. The total time $T=n t$ is the delay factor.
- Example: repeated hashing

$$
s \rightarrow H^{1}(s) \rightarrow H(H(s)) \rightarrow \cdots \rightarrow H^{(n)}(s) .
$$

- Cannot be computed in time faster than T, even given unlimited resources.

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
$f: X \rightarrow Y$ that:

- Is computed in n sequential steps, each of which takes time t. The total time $T=n t$ is the delay factor.
- Example: repeated hashing

$$
s \rightarrow H^{1}(s) \rightarrow H(H(s)) \rightarrow \cdots \rightarrow H^{(n)}(s) .
$$

- Cannot be computed in time faster than T, even given unlimited resources.
- The correctness of the output can be quickly verified.

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.
A Verifiable Delay Function (Boneh, Bonneau, Bünz, Fisch) is a function
$f: X \rightarrow Y$ that:

- Is computed in n sequential steps, each of which takes time t. The total time $T=n t$ is the delay factor.
- Example: repeated hashing

$$
s \rightarrow H^{1}(s) \rightarrow H(H(s)) \rightarrow \cdots \rightarrow H^{(n)}(s) .
$$

- Cannot be computed in time faster than T, even given unlimited resources.
- The correctness of the output can be quickly verified.
- Non-example: repeated hashing.

Verifiable Delay Functions: Slide 2/5

One way to build VDFs:

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

- Natural sequential function f : compose ℓ-isogenies φ_{i}

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

- Natural sequential function f : compose ℓ-isogenies φ_{i}

- How to quickly verify correctness of the output?

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

- Natural sequential function f : compose ℓ-isogenies φ_{i}

- How to quickly verify correctness of the output? Pairings.

Interlude: Pairings $1 / 4$

Let $(N, p)=1$, fix any basis $E[N]=\langle R, S\rangle$.
(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings $1 / 4$

Let $(N, p)=1$, fix any basis $E[N]=\langle R, S\rangle$.
For any points $P, Q \in E[N]$ there exist $a, b, c, d \in \mathbb{Z} / N \mathbb{Z}$ such that

$$
\begin{aligned}
& P=a R+b S \\
& Q=c R+d S .
\end{aligned}
$$

(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings $1 / 4$

Let $(N, p)=1$, fix any basis $E[N]=\langle R, S\rangle$.
For any points $P, Q \in E[N]$ there exist $a, b, c, d \in \mathbb{Z} / N \mathbb{Z}$ such that

$$
\begin{aligned}
& P=a R+b S \\
& Q=c R+d S
\end{aligned}
$$

The form

$$
\operatorname{det}_{N}(P, Q)=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \in \mathbb{Z} / n \mathbb{Z}
$$

is bilinear, non-degenerate, and independent from the choice of basis.
(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings 2/4

Theorem
Let E / \mathbb{F}_{q} be a curve. There exists a Galois invariant bilinear map

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}},
$$

called the Weil pairing of order N, and a primitive N-th root of unity
$\zeta \in \overline{\mathbb{F}_{q}}$ such that

$$
e(P, Q)=\zeta^{\operatorname{det}_{N}(P, Q)}
$$

(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings 2/4

Theorem
Let E / \mathbb{F}_{q} be a curve. There exists a Galois invariant bilinear map

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}},
$$

called the Weil pairing of order N, and a primitive N-th root of unity $\zeta \in \overline{\mathbb{F}_{q}}$ such that

$$
e(P, Q)=\zeta^{\operatorname{det}_{N}(P, Q)}
$$

The degree k of the smallest extension such that $\zeta \in \mathbb{F}_{q^{k}}$ is called the embedding degree of the pairing.
(Slide stolen shamelessly from Luca De Feo)

Interlude: Pairings $3 / 4$

For any elliptic curve E / \mathbb{F}_{q}, we have the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}} .
$$

Interlude: Pairings $3 / 4$

For any elliptic curve E / \mathbb{F}_{q}, we have the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}} .
$$

Can think of it as a map of groups

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

Interlude: Pairings 3/4

For any elliptic curve E / \mathbb{F}_{q}, we have the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}} .
$$

Can think of it as a map of groups

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}
$$

There exist efficiently computable pairings with:

- $\mathbb{G}_{1} \subseteq E\left(\mathbb{F}_{q}\right)$ of prime order.

Interlude: Pairings $3 / 4$

For any elliptic curve E / \mathbb{F}_{q}, we have the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}} .
$$

Can think of it as a map of groups

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3} .
$$

There exist efficiently computable pairings with:

- $\mathbb{G}_{1} \subseteq E\left(\mathbb{F}_{q}\right)$ of prime order.
- $\mathbb{G}_{2} \subseteq E\left(\mathbb{F}_{q^{k}}\right)$ of prime order (remember k is the embedding degree).

Interlude: Pairings 3/4

For any elliptic curve E / \mathbb{F}_{q}, we have the Weil pairing

$$
e: E[N] \times E[N] \rightarrow \mu_{N} \subseteq \overline{\mathbb{F}_{q}} .
$$

Can think of it as a map of groups

$$
e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3} .
$$

There exist efficiently computable pairings with:

- $\mathbb{G}_{1} \subseteq E\left(\mathbb{F}_{q}\right)$ of prime order.
- $\mathbb{G}_{2} \subseteq E\left(\mathbb{F}_{q^{k}}\right)$ of prime order (remember k is the embedding degree).
- $\mathbb{G}_{3} \subseteq \mathbb{F}_{q^{k}}^{*}$ of prime order.

Interlude: Pairings $4 / 4$

- Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be elliptic curves with the same embedding degree k.

Interlude: Pairings $4 / 4$

- Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be elliptic curves with the same embedding degree k.
- Let $f: E \rightarrow E^{\prime}$ be an isogeny with dual $\hat{f}: E^{\prime} \rightarrow E$.

Interlude: Pairings $4 / 4$

- Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be elliptic curves with the same embedding degree k.
- Let $f: E \rightarrow E^{\prime}$ be an isogeny with dual $\hat{f}: E^{\prime} \rightarrow E$.
- Let $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ and $e^{\prime}: \mathbb{G}_{1}^{\prime} \times \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{3}$ be pairings on E and E^{\prime} respectively.

Interlude: Pairings $4 / 4$

- Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be elliptic curves with the same embedding degree k.
- Let $f: E \rightarrow E^{\prime}$ be an isogeny with dual $\hat{f}: E^{\prime} \rightarrow E$.
- Let $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ and $e^{\prime}: \mathbb{G}_{1}^{\prime} \times \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{3}$ be pairings on E and E^{\prime} respectively.
- Then we get a commutative diagram:

Interlude: Pairings $4 / 4$

- Let E / \mathbb{F}_{q} and $E^{\prime} / \mathbb{F}_{q}$ be elliptic curves with the same embedding degree k.
- Let $f: E \rightarrow E^{\prime}$ be an isogeny with dual $\hat{f}: E^{\prime} \rightarrow E$.
- Let $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{3}$ and $e^{\prime}: \mathbb{G}_{1}^{\prime} \times \mathbb{G}_{2}^{\prime} \rightarrow \mathbb{G}_{3}$ be pairings on E and E^{\prime} respectively.
- Then we get a commutative diagram:

$$
\begin{aligned}
& \mathbb{G}_{1} \times \mathbb{G}_{2}^{\prime} \xrightarrow{f \times 1} \mathbb{G}_{1}^{\prime} \times \mathbb{G}_{2}^{\prime} \\
& 1 \times \hat{f} \mid \\
& \downarrow \\
& \mathbb{G}_{1} \times \mathbb{G}_{2} \xrightarrow[e]{ } \quad{ }^{\bullet}{ }^{\prime}{ }^{\prime} \\
& \mathbb{G}_{3}
\end{aligned}
$$

- For $P \in \mathbb{G}_{1}$ and $Q \in \mathbb{G}_{2}^{\prime}$:

$$
e(P, \hat{f}(Q))=e^{\prime}(f(P), Q)
$$

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

- Compute the composition of ℓ-isogenies
and the dual \hat{f}.

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

- Compute the composition of ℓ-isogenies

$$
E_{0} \stackrel{\varphi_{1}}{\longrightarrow} E_{1} \stackrel{\varphi_{2}}{\longrightarrow} \cdots \xrightarrow{\stackrel{\varphi_{n}}{\longrightarrow}} E_{n}
$$

and the dual \hat{f}.

- Publish f, \hat{f}, groups $\mathbb{G}_{1}, \mathbb{G}_{2} \subseteq E_{0}$, groups $\mathbb{G}_{1}^{\prime}, \mathbb{G}_{2}^{\prime} \subseteq E_{n}$, pairings e and e^{\prime}, a generator P of \mathbb{G}_{1}, and $f(P)$.

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

- Compute the composition of ℓ-isogenies

$$
E_{0} \stackrel{\varphi_{1}}{\longrightarrow} E_{1} \stackrel{\varphi_{2}}{\longrightarrow} \cdots \xrightarrow{\stackrel{\varphi_{n}}{\longrightarrow}} E_{n}
$$

and the dual \hat{f}.

- Publish f, \hat{f}, groups $\mathbb{G}_{1}, \mathbb{G}_{2} \subseteq E_{0}$, groups $\mathbb{G}_{1}^{\prime}, \mathbb{G}_{2}^{\prime} \subseteq E_{n}$, pairings e and e^{\prime}, a generator P of \mathbb{G}_{1}, and $f(P)$.
Protocol - verify:

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

- Compute the composition of ℓ-isogenies

$$
E_{0} \stackrel{\varphi_{1}}{\longrightarrow} E_{1} \stackrel{\varphi_{2}}{\longrightarrow} \cdots \xrightarrow{\stackrel{\varphi_{n}}{\longrightarrow}} E_{n}
$$

and the dual \hat{f}.

- Publish f, \hat{f}, groups $\mathbb{G}_{1}, \mathbb{G}_{2} \subseteq E_{0}$, groups $\mathbb{G}_{1}^{\prime}, \mathbb{G}_{2}^{\prime} \subseteq E_{n}$, pairings e and e^{\prime}, a generator P of \mathbb{G}_{1}, and $f(P)$.
Protocol - verify:
- Choose $Q \in \mathbb{G}_{2}^{\prime}$.

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

- Compute the composition of ℓ-isogenies

$$
E_{0} \stackrel{\varphi_{1}}{\longrightarrow} E_{1} \stackrel{\varphi_{2}}{\longrightarrow} \cdots \xrightarrow{\stackrel{\varphi_{n}}{\longrightarrow}} E_{n}
$$

and the dual \hat{f}.

- Publish f, \hat{f}, groups $\mathbb{G}_{1}, \mathbb{G}_{2} \subseteq E_{0}$, groups $\mathbb{G}_{1}^{\prime}, \mathbb{G}_{2}^{\prime} \subseteq E_{n}$, pairings e and e^{\prime}, a generator P of \mathbb{G}_{1}, and $f(P)$.
Protocol - verify:
- Choose $Q \in \mathbb{G}_{2}^{\prime}$.
- Check that $e(P, \hat{f}(Q))=e^{\prime}(f(P), Q)$.

Verifiable Delay Functions: Slide $4 / 5$

- Proposal uses 2-isogenies of supersingular elliptic curves defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}} ; p$ is a well-chosen 1503 -bit prime (for 128-bit security).

Verifiable Delay Functions: Slide $4 / 5$

- Proposal uses 2-isogenies of supersingular elliptic curves defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}} ; p$ is a well-chosen 1503 -bit prime (for 128-bit security).
- Over \mathbb{F}_{p} : Setup takes 238 KB / 1416s, evaluation takes 2056s, verification takes 7s.

Verifiable Delay Functions: Slide $4 / 5$

- Proposal uses 2-isogenies of supersingular elliptic curves defined over \mathbb{F}_{p} or $\mathbb{F}_{p^{2}} ; p$ is a well-chosen 1503 -bit prime (for 128-bit security).
- Over \mathbb{F}_{p} : Setup takes 238 KB / 1416s, evaluation takes 2056s, verification takes 7s.
- Over $\mathbb{F}_{p^{2}}$: Setup takes $491 \mathrm{~KB} / 2727 \mathrm{~s}$, evaluation takes 2817s, verification takes 7s.

Verifiable Delay Functions: Slide 5/5

De Feo, Masson, Petit, Sanso give the following comparison of their isogeny VDF with the literature:

VDF	Sequential Eval	Parallel Eval	Verify	SetupProof size	
Modular square root	T	T	$T^{2 / 3}$	$T^{2 / 3}$	T
Univariate permutation	T^{2}	$>T-o(T)$	$\log (T)$	$\log (T)$	-
polynomials					

Table 1. VDF comparison-Asymptotic VDF comparison: T represents the delay factor, λ the security parameter, s the number of processors. For simplicity, we assume that T is super-polynomial in λ. All times are to be understood up to a (global across a line) constant factor.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.
- Alice and Bob do a pairwise key exchange and find $A B=[\mathbf{a b}] * E$.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.
- Alice and Bob do a pairwise key exchange and find $A B=[\mathbf{a b}] * E$.
- They exchange $A B$ with Chloe and find $[\mathbf{a b c}] * E$.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.
- Alice and Bob do a pairwise key exchange and find $A B=[\mathbf{a b}] * E$.
- They exchange $A B$ with Chloe and find $[\mathbf{a b c}] * E$.
- This requires 2 key exchanges.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.
- Alice and Bob do a pairwise key exchange and find $A B=[\mathbf{a b}] * E$.
- They exchange $A B$ with Chloe and find $[\mathbf{a b c}] * E$.
- This requires 2 key exchanges.
- The time and memory needed for this basic interactive n-party key exchange grows with n.

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key exchange?

- Easy CSIDH-style algorithm with $n=3$:
- Alice, Bob, and Chloe compute $([\mathbf{a}],[\mathbf{a}] * E),([\mathbf{b}],[\mathbf{b}] * E)$, and $([\mathbf{c}],[\mathbf{c}] * E)$.
- Alice and Bob do a pairwise key exchange and find $A B=[\mathbf{a b}] * E$.
- They exchange $A B$ with Chloe and find $[\mathbf{a b c}] * E$.
- This requires 2 key exchanges.
- The time and memory needed for this basic interactive n-party key exchange grows with n.

Open question: is there something much better for large n ?

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key exchange?

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key exchange?

- For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key exchange?

- For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key exchange?

- For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.
- For base field, take $p=2^{a} 3^{b} 5^{c} \cdot f \pm 1$.

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key exchange?

- For the same construction with SIKE (Azarderaskhsh, Jalali, Jao, Soukharev), need to change parameter choices.
- With three parties, Alice computes a chain of 2-isogenies, Bob 3-isogenies, and Chloe 5-isogenies.
- For base field, take $p=2^{a} 3^{b} 5^{c} \cdot f \pm 1$.
- As n increases, isogeny computations become slower (higher degree) - but not a big problem...

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which this is still secure?

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which this is still secure?

Open question: is there something much better for mediumlarge n ?

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

- Awesome fact: There is an isomorphism of abelian varieties

$$
\left[\mathbf{a}_{1}\right] * E \times \cdots \times\left[\mathbf{a}_{n}\right] * E \rightarrow\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] * E \times E^{n-1}
$$

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

- Awesome fact: There is an isomorphism of abelian varieties

$$
\left[\mathbf{a}_{1}\right] * E \times \cdots \times\left[\mathbf{a}_{n}\right] * E \rightarrow\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] * E \times E^{n-1}
$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

- Awesome fact: There is an isomorphism of abelian varieties

$$
\left[\mathbf{a}_{1}\right] * E \times \cdots \times\left[\mathbf{a}_{n}\right] * E \rightarrow\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] * E \times E^{n-1}
$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

Consequences:

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

- Awesome fact: There is an isomorphism of abelian varieties

$$
\left[\mathbf{a}_{1}\right] * E \times \cdots \times\left[\mathbf{a}_{n}\right] * E \rightarrow\left[\mathbf{a}_{1} \cdots \mathbf{a}_{n}\right] * E \times E^{n-1}
$$

Hard open problem: find an efficiently computable isomorphism invariant for abelian varieties of this form.

Consequences:

- Efficient multiparty non-interactive key exchange.
- Verifiable random functions.
- World peace.
- etc.

Dreaming from isogenies: n-way NIKE

- Choose an elliptic curve E / \mathbb{F}_{q}.

Dreaming from isogenies: n-way NIKE

- Choose an elliptic curve E / \mathbb{F}_{q}.
- Each party chooses $\left[\mathbf{a}_{i}\right] \in \operatorname{cl}(\operatorname{End}(E))$ and publishes $E_{i}=\left[\mathbf{a}_{i}\right] * E$.

Dreaming from isogenies: n-way NIKE

- Choose an elliptic curve E / \mathbb{F}_{q}.
- Each party chooses $\left[\mathbf{a}_{i}\right] \in \operatorname{cl}(\operatorname{End}(E))$ and publishes $E_{i}=\left[\mathbf{a}_{i}\right] * E$.
- Choose $j \neq i$. The shared secret is the isomorphism invariant of

$$
E_{1} \times \cdots \times E_{j-1} \times\left[\mathbf{a}_{i}\right] * E_{j} \times E_{j+1} \times \cdots E_{n},
$$

where E_{i} is omitted from the product.

Dreaming from isogenies: n-way NIKE

- Choose an elliptic curve E / \mathbb{F}_{q}.
- Each party chooses $\left[\mathbf{a}_{i}\right] \in \operatorname{cl}(\operatorname{End}(E))$ and publishes $E_{i}=\left[\mathbf{a}_{i}\right] * E$.
- Choose $j \neq i$. The shared secret is the isomorphism invariant of

$$
E_{1} \times \cdots \times E_{j-1} \times\left[\mathbf{a}_{i}\right] * E_{j} \times E_{j+1} \times \cdots E_{n}
$$

where E_{i} is omitted from the product.

- Note that by Awesome Fact this is the isomorphism invariant of $\left[\prod_{i=1}^{n} \mathbf{a}_{i}\right] * E^{n-1}$.

Thank you!

