Protocols: continued

Chloe Martindale

Technische Universiteit Eindhoven

Birmingham, UK, 16 September 2019

Slides at www.martindale.info/talks

Signatures 1/4

Application 1 of (C)SIDH: Digital signatures.

msg

Verifier

1/19

Signatures 1/4
Application 1 of (C)SIDH: Digital signatures.

Signer Verifier
msg

(sk, pk) < KeyGen

1/19

Signatures 1/4

Application 1 of (C)SIDH: Digital signatures.

msg
(sk, pk) < KeyGen

o = Sign(sk, msg) ——2Bk

Verifier

Verify(pk, msg, o)

1/19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Prover Verifier

K
KeyBen, sk, pk)

magic
sk,rany —— ID

c compute challenge ¢

-

magic
sk, ID, ¢,ranp, —— ID-c

T

(pk, 1D, IDc) Verify(pk, ID, ¢, ID-c)

2/19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Signer Verifier
msg, H

K
KeyBen, sk, pk)

magic
sk,ran —— ID

¢ := H(ID||msg)

magic
sk, ID, ¢, ranp, —— ID-c

T

(pk, 1D, IDc) Verify(pk, ID, H(ID||msg), ID-c)

2/19

Signatures 2/4
One way to build signatures: Identification scheme (simplified here)

Prover Verifier

K
KeyBen, sk, pk)

magic
sk,rany —— ID

c compute challenge ¢

-

magic
sk, ID, ¢,ranp, —— ID-c

T

(pk, 1D, IDc) Verify(pk, ID, ¢, ID-c)

2/19

Signatures 3/4

One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier
E,O = End(E),
ideals ly, ..., l; € cl(O)

3/19

Signatures 3/4

One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier
E,O = End(E),
ideals [1,...,l; € cl(O)

€1,...,6n € Z[,&B]

KON, ([a] = [TT1°), [a] E)

3/19

Signatures 3/4

One way to build signatures: Isogeny identification scheme
(Stolbunov; SeaSign: De Feo, Galbraith).

Prover Public Verifier
E,O = End(E),
ideals [1,...,l; € cl(O)

€1,...,6n € Z[,&B]

KON, ([a] = [TT1°), [a] E)

c random ¢ € {0,1}

e

random fi,....fu € Z[_pp

eyGen = ,‘fl,
s, { 9= 11

ID-c =ba~¢

3/19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
Verifier

(Stolbunov; SeaSign: De Feo, Galbraith).
Prover Public
E,O = End(E),
ideals [1,...,l; € cl(O)
€1,...,6y € Z[_B,B]
random ¢ € {0,1}

S22, (al = (IT4°),] < E)
c
N —

randomfi,...,fy € Z|_p,p

eyGen b] = S,
to, 9= 14
ID-c =ba—¢
([a] = E,ID, ID-c) check that
ID 22 ID-c * ([a] * E)

3/19

Signatures 3/4
One way to build signatures: Isogeny identification scheme
Verifier

(Stolbunov; SeaSign: De Feo, Galbraith).
Prover Public
E,O = End(E),
ideals [1,...,l; € cl(O)
€1,...,6y € Z[_B,B]
random ¢ € {0,1}

S22, (al = (IT4°),] < E)
c
N —

randomfi,...,fu € Z|_p,p

eyGen b] = S,
to, 9= 14
ID-c =ba—¢
([a] = E,ID, ID-c) check that
ID 22 ID-c * ([a] * E)

after k challenges ¢, an imposter prover succeeds with probability 2.

3/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba™!
without leaking a?

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

» cl(O) is cyclic.

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?
» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

» cl(O) is cyclic.
» cl(O) is generated by an ideal of norm 3.

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?
» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:
» cl(O) is cyclic.
» cl(O) is generated by an ideal of norm 3.
» Elements of cl(O) easy to represent.

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

cl(O) is cyclic.

cl(O) is generated by an ideal of norm 3.

Elements of cl(O) easy to represent.

CSI-FiSh signatures take ~ 390ms/263B.

v

vYvyy

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

cl(O) is cyclic.

cl(O) is generated by an ideal of norm 3.

Elements of cl(O) easy to represent.

CSI-FiSh signatures take ~ 390ms/263B.

» For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

v

vYvyy

4/19

Signatures 4/4

» Big question: how do you communicate ID-c = ba~!
without leaking a?

» Big answer: in terms of generators of class group cl(O).

» CSI-FiSh (Beullens, Kleinjung, Vercauteren): cornputed the class
group cl(O) for CSIDH-512:

cl(O) is cyclic.

cl(O) is generated by an ideal of norm 3.

Elements of cl(O) easy to represent.

CSI-FiSh signatures take ~ 390ms/263B.

» For higher security levels (NIST 3, 5), computing the entire
class group become impractical.

v

vYvyy

» For SIDH, more complicated as keys cannot be reused;
class group computation much harder
~+ signatures take ~ 3.7s/141KB.

4/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Ythat:

5/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

5/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

» Example: repeated hashing
s — H(s) = H(H(s)) — --- — H®(s).

5/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

» Example: repeated hashing
s — H(s) = H(H(s)) — --- — H®(s).

» Cannot be computed in time faster than T, even given
unlimited resources.

5/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

» Example: repeated hashing
s — H(s) = H(H(s)) — --- — H®(s).

» Cannot be computed in time faster than T, even given
unlimited resources.

» The correctness of the output can be quickly verified.

5/19

Verifiable Delay Functions: Slide 1/5

Application 2 of (C)SIDH: VDFs.

A Verifiable Delay Function (Boneh, Bonneau, Biinz, Fisch) is a function
f: X — Y that:

» Is computed in n sequential steps, each of which takes time
t. The total time T = nt is the delay factor.

» Example: repeated hashing
s — H(s) — H(H(s)) — -+ — H®™(s).
» Cannot be computed in time faster than T, even given
unlimited resources.
» The correctness of the output can be quickly verified.
» Non-example: repeated hashing.

5/19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs:

6/19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

6/19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

» Natural sequential function f: compose (-isogenies ;

6/19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

» Natural sequential function f: compose (-isogenies ;

» How to quickly verify correctness of the output?

6/19

Verifiable Delay Functions: Slide 2/5

One way to build VDFs: Isogenies! (De Feo, Masson, Petit, Sanso)

» Natural sequential function f: compose (-isogenies ;

» How to quickly verify correctness of the output? Pairings.

6/19

Interlude: Pairings 1/4

Let (N,p) =1, fix any basis E[N| = (R, S).

(Slide stolen shamelessly from Luca De Feo)

7/19

Interlude: Pairings 1/4
Let (N,p) =1, fix any basis E[N| = (R, S).
For any points P, Q € E[N] there exista, b, c,d € Z/NZ such that
P =aR + bS

Q = cR +dS.

(Slide stolen shamelessly from Luca De Feo)

7/19

Interlude: Pairings 1/4

Let (N,p) =1, fix any basis E[N| = (R, S).
For any points P, Q € E[N] there exista, b, c,d € Z/NZ such that

P =aR +bS
Q =cR+4dS.
The form

dety(P, Q) = det < LCI Z) =ad —bc € Z/nZ

is bilinear, non-degenerate, and independent from the choice of

basis.
(Slide stolen shamelessly from Luca De Feo)

7/19

Interlude: Pairings 2/4

Theorem
Let E/F; be a curve. There exists a Galois invariant bilinear map

e: E[N] x E[N] — un C Fy,

called the Weil pairing of order N, and a primitive N-th root of unity
¢ € F, such that

(P, Q) = (P,

(Slide stolen shamelessly from Luca De Feo)

8/19

Interlude: Pairings 2/4

Theorem
Let E/F; be a curve. There exists a Galois invariant bilinear map

e: E[N] x E[N] — un C Fy,

called the Weil pairing of order N, and a primitive N-th root of unity
¢ € F, such that

(P, Q) = (P,

The degree k of the smallest extension such that ¢ € ¥ is called the
embedding degree of the pairing.

(Slide stolen shamelessly from Luca De Feo)

8/19

Interlude: Pairings 3/4

For any elliptic curve E/IF;, we have the Weil pairing

e: E[N] x E[N] — un C F,.

9/19

Interlude: Pairings 3/4

For any elliptic curve E/IF;, we have the Weil pairing
e: E[N] x E[N] — un C F,.
Can think of it as a map of groups

E:G1XG2—>G3.

9/19

Interlude: Pairings 3/4

For any elliptic curve E/IF;, we have the Weil pairing
e: E[N] x E[N] — un C F,.
Can think of it as a map of groups
e: G x Gy — Gs.

There exist efficiently computable pairings with:
» G1 C E(IFy) of prime order.

9/19

Interlude: Pairings 3/4

For any elliptic curve E/IF;, we have the Weil pairing
e: E[N] x E[N] — un C F,.
Can think of it as a map of groups
e: G x Gy — Gs.

There exist efficiently computable pairings with:
» G1 C E(IFy) of prime order.
> Gz C E(Fy) of prime order

(remember k is the embedding degree).

9/19

Interlude: Pairings 3/4

For any elliptic curve E/IF;, we have the Weil pairing
e: E[N] x E[N] — un C F,.
Can think of it as a map of groups
e: G x Gy — Gs.

There exist efficiently computable pairings with:
» G1 C E(IFy) of prime order.
> Gz C E(Fy) of prime order

(remember k is the embedding degree).

» G3CF ;‘k of prime order.

9/19

Interlude: Pairings 4/4

» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.

10/19

Interlude: Pairings 4/4

» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.

> Letf: E — E be an isogeny with dual f : E/ — E.

10/19

Interlude: Pairings 4/4

» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.

> Letf: E — E be an isogeny with dual f : E/ — E.

» Lete: Gy x G = Gz and ¢ : G} x G, — G3 be pairings on
E and E’ respectively.

10/19

Interlude: Pairings 4/4
» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.
> Letf: E — E be an isogeny with dual f : E/ — E.
» Lete: Gy x G = Gz and ¢ : G} x G, — G3 be pairings on
E and E’ respectively.
» Then we get a commutative diagram:

Gle’zﬁG’l x G}

o)

G1 X Gz G?,

e

10/19

Interlude: Pairings 4/4

» Let E/F,; and E'/F, be elliptic curves with the same
embedding degree k.

Letf : E — E' be an isogeny with dual f : E' — E.

Lete: Gy x G, — Gz and ¢ : G} x G/, — G3 be pairings on
E and E’ respectively.

v

v

v

Then we get a commutative diagram:

Gle’zﬁG’l x G}

o)

G1 X Gz G?,

e

v

For P € Gy and Q € G:

e(P.f(Q)) = ¢ (f(P), Q).

10/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

11/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

» Compute the composition of /-isogenies

f

and the dual f .

11/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

» Compute the composition of /-isogenies

EO ®1 El 2 . ®n En
f
and the dual f .

> Publishf,f, groups G1, G, C Ey, groups G, G, C E,,
pairings e and ¢/, a generator P of G1, and f(P).

11/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

» Compute the composition of /-isogenies

EO ®1 El 2 . ®n En
f
and the dual f .

> Publishf,f, groups G1, G, C Ey, groups G, G, C E,,
pairings e and ¢/, a generator P of G1, and f(P).

Protocol - verify:

11/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

» Compute the composition of /-isogenies

EO ®1 El 2 . ®n En
f
and the dual f .

> Publishf,f, groups G1, G, C Ey, groups G, G, C E,,
pairings e and ¢/, a generator P of G1, and f(P).

Protocol - verify:
» Choose Q € Gj.

11/19

Verifiable Delay Functions: Slide 3/5

Protocol - setup and evaluation:

» Compute the composition of /-isogenies

EO ®1 El ¥2 . ®n En
f
and the dual f .

> Publishf,f, groups G1, G, C Ey, groups G, G, C E,,
pairings e and ¢/, a generator P of G1, and f(P).

Protocol - verify:
» Choose Q € Gj.
» Check that e(P,f(Q)) = ¢'(f(P), Q).

11/19

Verifiable Delay Functions: Slide 4/5

» Proposal uses 2-isogenies of supersingular elliptic curves
defined over I, or IF2; p is a well-chosen 1503-bit prime
(for 128-bit security).

12/19

Verifiable Delay Functions: Slide 4/5

» Proposal uses 2-isogenies of supersingular elliptic curves
defined over I, or IF2; p is a well-chosen 1503-bit prime
(for 128-bit security).

» Over F,: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

12/19

Verifiable Delay Functions: Slide 4/5

» Proposal uses 2-isogenies of supersingular elliptic curves
defined over I, or IF2; p is a well-chosen 1503-bit prime
(for 128-bit security).

» Over F,: Setup takes 238 KB / 1416s, evaluation takes
2056s, verification takes 7s.

» Over sz: Setup takes 491KB / 2727s, evaluation takes
2817s, verification takes 7s.

12/19

Verifiable Delay Functions: Slide 5/5

De Feo, Masson, Petit, Sanso give the following comparison of
their isogeny VDF with the literature:

VDF Sequential Parallel Verify Setup Proof
Eval Eval size
Modular square root T s R T —
Univariate permutation T? >T —o(T) log(T) log(T) —_
polynomials®
Wesolowski’s VDF L+ 27T U+ 2T At A3 A3
Pietrzak’s VDF (1+ %}T 1+ ﬁF)T log (T7) A log (T)
This work T T M A -
This work (optimized) T T A Tlog(X) —

Table 1. VDF comparison—Asymptotic VDF comparison: T' represents the delay
factor, A the security parameter, s the number of processors. For simplicity, we assume
that 7' is super-polynomial in A. All times are to be understood up to a (global across
a line) constant factor.

13/19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?

» Easy CSIDH-style algorithm with n = 3:

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:

» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:
» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).
» Alice and Bob do a pairwise key exchange and find
AB = [ab] < E.

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:
» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).
» Alice and Bob do a pairwise key exchange and find
AB = [ab] < E.
» They exchange AB with Chloe and find [abc] * E.

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:
» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).
» Alice and Bob do a pairwise key exchange and find
AB = [ab] < E.
» They exchange AB with Chloe and find [abc] * E.

» This requires 2 key exchanges.

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:
» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).
» Alice and Bob do a pairwise key exchange and find
AB = [ab] < E.
» They exchange AB with Chloe and find [abc] * E.

» This requires 2 key exchanges.

» The time and memory needed for this basic interactive
n-party key exchange grows with n.

14 /19

Multiparty key exchange: Slide 1/5

Natural question: how efficiently can we do n-party key
exchange?
» Easy CSIDH-style algorithm with n = 3:
» Alice, Bob, and Chloe compute ([a], [a] * E), ([b], [b] * E),
and ([c], [c] * E).
» Alice and Bob do a pairwise key exchange and find
AB = [ab] < E.
» They exchange AB with Chloe and find [abc] * E.

» This requires 2 key exchanges.

» The time and memory needed for this basic interactive
n-party key exchange grows with n.

Open question: is there something much better for large n?

14 /19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

15/19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

» For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,
Soukharev), need to change parameter choices.

15/19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

» For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,
Soukharev), need to change parameter choices.

» With three parties, Alice computes a chain of 2-isogenies,
Bob 3-isogenies, and Chloe 5-isogenies.

15/19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

» For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,
Soukharev), need to change parameter choices.

» With three parties, Alice computes a chain of 2-isogenies,
Bob 3-isogenies, and Chloe 5-isogenies.

» For base field, take p = 273°5¢ . f + 1.

15/19

Multiparty key exchange: Slide 2/5

Natural question: how efficiently can we do n-party key
exchange?

» For the same construction with SIKE (Azarderaskhsh, Jalali, Jao,
Soukharev), need to change parameter choices.

» With three parties, Alice computes a chain of 2-isogenies,
Bob 3-isogenies, and Chloe 5-isogenies.

» For base field, take p = 273°5¢ . f + 1.

» As n increases, isogeny computations become slower
(higher degree) — but not a big problem...

15/19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

16 /19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

16 /19

Multiparty key exchange: Slide 3/5

For a large number of parties with the SIKE version, there is an
attack due to Petit (see tomorrow).

Open question: what is the largest number of parties for which
this is still secure?

Open question: is there something much better for medium-
large n?

16 /19

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

17 /19

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

» Awesome fact: There is an isomorphism of abelian
varieties

[a1] *E x --- X [ay] * E — [ay ---a,] * E x E""L.

17 /19

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

» Awesome fact: There is an isomorphism of abelian
varieties

[a1] *E x --- X [ay] * E — [ay ---a,] * E x E""L.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

17 /19

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

» Awesome fact: There is an isomorphism of abelian
varieties

[a1] *E x --- X [ay] * E — [ay ---a,] * E x E""L.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:

17 /19

Multiparty key exchange: Slide 4/5

The Dream (Boneh, Glass, Krashen, Lauter, Sharif, Silverberg, Tibouchi, Zhandry):

» Awesome fact: There is an isomorphism of abelian
varieties

[a1] *E x --- X [ay] * E — [ay ---a,] * E x E""L.

Hard open problem: find an efficiently computable isomor-
phism invariant for abelian varieties of this form.

Consequences:

v

Efficient multiparty non-interactive key exchange.
» Verifiable random functions.

» World peace.
>

etc.

17 /19

Dreaming from isogenies: n-way NIKE

» Choose an elliptic curve E/F,.

18/19

Dreaming from isogenies: n-way NIKE

» Choose an elliptic curve E/F,.

» Each party chooses [a;| € cl(End(E)) and publishes
Ei = [ai] x E.

18/19

Dreaming from isogenies: n-way NIKE

» Choose an elliptic curve E/F,.

» Each party chooses [a;| € cl(End(E)) and publishes
Ei = [ai] x E.

» Choose j # i. The shared secret is the isomorphism
invariant of

E1><---><E]-_1><[ai]*E]-><E]-+1x---En,

where E; is omitted from the product.

18/19

Dreaming from isogenies: n-way NIKE

» Choose an elliptic curve E/F,.

» Each party chooses [a;| € cl(End(E)) and publishes
Ei = [ai] x E.

» Choose j # i. The shared secret is the isomorphism
invariant of

E1><---><E]-_1><[ai]*E]-><E]-+1x---En,

where E; is omitted from the product.

» Note that by Awesome Fact this is the isomorphism
invariant of [[[, a;] * E"~ L.

18/19

Thank you!

