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- c. 360-350 BC: Menachmus

- c. 350 BC: Euclid

- c. 250 AD: Diophantus writes
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ax2 + by2 = 1



Diophantine equations through the ages: two variables

Definition
We define an algebraic curve over Q to be a curve that can be
written as

f (x , y) = 0,

where f ∈ Z[x , y ].

Pierre de Fermat (1601-1665)

- Showed that all algebraic curves over Q of
degree 2 are conics

- Claimed to have a proof that there are no
non-trivial rational solutions to the
algebraic curve xn + yn = 1 for n ≥ 3.
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Diophantine equations through the ages: two variables

Definition
We define an algebraic curve over Q to be a curve that can be
written as

f (x , y) = 0,

where f ∈ Z[x , y ].

Isaac Newton (1643-1727)

- 1710: classifies algebraic curves over Q of
degree 3, showing by that by applying
rational transformations to x and y , these
curves can always be written as

y2 = x3 + ax + b

for some a, b ∈ Z.



Examples of algebraic curves of degree 3

Image credits: ”EllipticCurveCatalog” by Tos - Own work. Licensed under Public Domain via Commons
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Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1,

for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2,

for which the
other solution is 2−

√
2.



Interlude: Algebraic integers

Definition
An algebraic integer µ is a solution of an equation

xd + ad−1x
d−1 + · · ·+ a1x + a0 = 0, ai ∈ Z.

Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1.

Definition
If µ is a solution of an equation as above for which all the solutions
are positive, then µ is totally positive.

Non-Example: µ = 1 +
√

2 is a solution of x2 − 2x − 1, for which
the other solution is 1−

√
2.

Example: µ = 2 +
√

2 is a solution of x2 − 4x + 2, for which the
other solution is 2−

√
2.



Playing with algebraic curves

Definition
We define an algebraic curve over Q to be a curve that can be
written as

f (x , y) = 0,

where f ∈ Z[x , y ].

I The Jacobian of a curve contains the curve itself

I Jacobians are examples of abelian varieties

I Q: When can we construct a ‘nice’ map between 2 abelian
varieties?

I A: Take an abelian variety A. Then given an algebraic integer
µ (of the right degree) such that

I µ is real, and
I µ is totally positive,

we can construct an abelian variety A′ and a map to it called
a µ-isogeny.
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Two µ-isogenies of algebraic curves of degree 3

y2 = x3 + 1	


y2 = x3 − 15x + 22 	


y2 = x3 − 27	


3:1

2:1

These maps are explicit, for
example the top map is:

(x , y) 7→
(
x3 + 4

x2
,
x3y − 8y

x3

)
.
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I The Jacobian of a curve contains the curve.

I Jacobians of algebraic curves are examples of abelian varieties.

I In some cases we can construct a map between abelian
varieties called a µ-isogeny.
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A µ-isogeny graph over Fp is a graph with

I vertices given by abelian varieties over Fp (e.g. algebraic
curves of degree 3 mod p), and

I edges given by µ-isogenies.
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Playing with algebraic curves
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We can draw a 3-isogeny
graph of the top isogeny:
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the bottom isogeny:
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Playing with algebraic curves
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We define a volcano graph to be a symmetric graph that:

I contains a unique cycle, and

I has exactly v edges from every vertex, except for the vertices
joined to the cycle by a path of exactly d edges, from which
there is exactly 1 edge.
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Playing with algebraic curves

Definition
For µ a real totally positive algebraic integer,
we define G to be the µ-isogeny graph over Fp

with the maximum number of vertices and
edges.

Theorem (Kohel 1996)

If µ ∈ Z, then the connected components of G
are volcano graphs.

Theorem (M. 2016)

The connected components of G are volcano
graphs.
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Thank you!



Future research plans

I In my thesis, we see how to ‘walk around’ these graphs

I Starting point for many projects extending ideas for degree 3,
for example

I Work in progress: counting points on algebraic curves of
degree 5 and 6

I Construction of elliptic units for algebraic curves of degree 5
and 6 (and higher?)

I Explicit descent via µ-isogeny
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