From Conic Sections to Isogeny Graphs

Chloe Martindale

Universiteit Leiden and Université de Bordeaux
General Colloquium, Mathematics and Statistics, University College Dublin

29th June, 2016

Diophantine equations through the ages

- c. 360-350 BC: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes Arithmetica

Diophantine equations through the ages

- c. $360-350$ BC: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes Arithmetica

ellipse

Diophantine equations through the ages

- c. $360-350 \mathrm{BC}$: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes Arithmetica

parabola

$$
a x^{2}+b y^{2}=1
$$

Diophantine equations through the ages: two variables

Definition
We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

Pierre de Fermat (1601-1665)

- Showed that all algebraic curves over \mathbb{Q} of degree 2 are conics
- Claimed to have a proof that there are no non-trivial rational solutions to the algebraic curve $x^{n}+y^{n}=1$ for $n \geq 3$.

Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

Isaac Newton (1643-1727)

- 1710: classifies algebraic curves over \mathbb{Q} of degree 3 , showing by that by applying rational transformations to x and y, these curves can always be written as

$$
y^{2}=x^{3}+a x+b
$$

for some $a, b \in \mathbb{Z}$.

Examples of algebraic curves of degree 3

Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

c.1829: Abel and Jacobi construct the

 Jacobian of a curve.
Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.
c.1829: Abel and Jacobi construct the Jacobian of a curve.

- The Jacobian is an additive group containing the curve itself

Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.
c.1829: Abel and Jacobi construct the Jacobian of a curve.

- The Jacobian is an additive group containing the curve itself
- Jacobians are examples of abelian varieties

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Definition

If μ is a solution of an equation as above for which all the solutions are positive, then μ is totally positive.

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Definition

If μ is a solution of an equation as above for which all the solutions are positive, then μ is totally positive.

Non-Example: $\quad \mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$,

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Definition

If μ is a solution of an equation as above for which all the solutions are positive, then μ is totally positive.

Non-Example: $\quad \mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$, for which the other solution is $1-\sqrt{2}$.

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Definition

If μ is a solution of an equation as above for which all the solutions are positive, then μ is totally positive.

Non-Example: $\quad \mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$, for which the other solution is $1-\sqrt{2}$.

Example: $\quad \mu=2+\sqrt{2}$ is a solution of $x^{2}-4 x+2$,

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$
x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}=0, \quad a_{i} \in \mathbb{Z}
$$

Example: $\mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$.

Definition

If μ is a solution of an equation as above for which all the solutions are positive, then μ is totally positive.

Non-Example: $\quad \mu=1+\sqrt{2}$ is a solution of $x^{2}-2 x-1$, for which the other solution is $1-\sqrt{2}$.

Example: $\mu=2+\sqrt{2}$ is a solution of $x^{2}-4 x+2$, for which the other solution is $2-\sqrt{2}$.

Playing with algebraic curves

Definition
We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties

Playing with algebraic curves

Definition
We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that
- μ is real, and

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that
- μ is real, and
- μ is totally positive,

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that
- μ is real, and
- μ is totally positive,
we can construct an abelian variety A^{\prime}

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that
- μ is real, and
- μ is totally positive,
we can construct an abelian variety A^{\prime} and a map to it called a μ-isogeny.

Playing with algebraic curves

Definition

We define an algebraic curve over \mathbb{Q} to be a curve that can be written as

$$
f(x, y)=0
$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer μ (of the right degree) such that
- μ is real, and
- μ is totally positive,
we can construct an abelian variety A^{\prime} and a map to it called a μ-isogeny.

Two μ-isogenies of algebraic curves of degree 3

Two μ-isogenies of algebraic curves of degree 3

Playing with algebraic curves

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a μ-isogeny.

Playing with algebraic curves

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a μ-isogeny.

Definition

A μ-isogeny graph over \mathbb{F}_{p} is a graph with

Playing with algebraic curves

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a μ-isogeny.

Definition

A μ-isogeny graph over \mathbb{F}_{p} is a graph with

- vertices given by abelian varieties over \mathbb{F}_{p}

Playing with algebraic curves

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a μ-isogeny.

Definition

A μ-isogeny graph over \mathbb{F}_{p} is a graph with

- vertices given by abelian varieties over \mathbb{F}_{p} (e.g. algebraic curves of degree $3 \bmod p$)

Playing with algebraic curves

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a μ-isogeny.

Definition

A μ-isogeny graph over \mathbb{F}_{p} is a graph with

- vertices given by abelian varieties over \mathbb{F}_{p} (e.g. algebraic curves of degree $3 \bmod p$), and
- edges given by μ-isogenies.

Playing with algebraic curves

Example

Playing with algebraic curves

Example

We can draw a 3-isogeny graph of the top isogeny:

And a 2-isogeny graph of the bottom isogeny:

Playing with algebraic curves

Definition
We define a volcano graph to be a symmetric graph that:

Playing with algebraic curves

Definition
We define a volcano graph to be a symmetric graph that:

Playing with algebraic curves

Definition

We define a volcano graph to be a symmetric graph that:

- contains a unique cycle

Playing with algebraic curves

Definition

We define a volcano graph to be a symmetric graph that:

- contains a unique cycle, and
- has exactly v edges from every vertex, except for the vertices joined to the cycle by a path of exactly d edges, from which there is exactly 1 edge.

Playing with algebraic curves

Definition

For μ a real totally positive algebraic integer, we define G to be the μ-isogeny graph over \mathbb{F}_{p} with the maximum number of vertices and edges.

Playing with algebraic curves

Definition

For μ a real totally positive algebraic integer, we define G to be the μ-isogeny graph over \mathbb{F}_{p} with the maximum number of vertices and edges.

Theorem (Kohel 1996)
If $\mu \in \mathbb{Z}$, then the connected components of G are volcano graphs.

Theorem (M. 2016)
The connected components of G are volcano
 graphs.

Future research plans

- In my thesis, we see how to 'walk around' these graphs

Future research plans

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3

Future research plans

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
- Work in progress: counting points on algebraic curves of degree 5 and 6

Future research plans

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
- Work in progress: counting points on algebraic curves of degree 5 and 6
- Construction of elliptic units for algebraic curves of degree 5 and 6 (and higher?)

Future research plans

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
- Work in progress: counting points on algebraic curves of degree 5 and 6
- Construction of elliptic units for algebraic curves of degree 5 and 6 (and higher?)
- Explicit descent via μ-isogeny

