From Conic Sections to Isogeny Graphs

Chloe Martindale

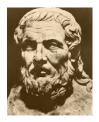
Universiteit Leiden and Université de Bordeaux

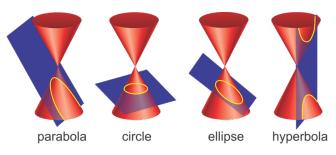
General Colloquium, Mathematics and Statistics, University College Dublin

29th June, 2016

Diophantine equations through the ages

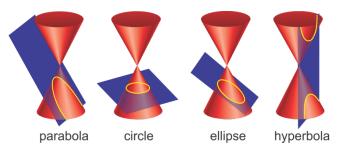
- c. 360-350 BC: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes *Arithmetica*





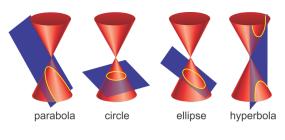
Diophantine equations through the ages

- c. 360-350 BC: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes *Arithmetica*



Diophantine equations through the ages

- c. 360-350 BC: Menachmus
- c. 350 BC: Euclid
- c. 250 AD: Diophantus writes Arithmetica



 $ax^2 + by^2 = 1$

Diophantine equations through the ages: two variables

Definition

We define an $\ensuremath{\textit{algebraic curve}}$ over $\mathbb Q$ to be a curve that can be written as

$$f(x,y)=0,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $f \in \mathbb{Z}[x, y]$.

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

Pierre de Fermat (1601-1665)

- Showed that all algebraic curves over ${\mathbb Q}$ of degree 2 are conics
- Claimed to have a proof that there are no non-trivial rational solutions to the algebraic curve xⁿ + yⁿ = 1 for n ≥ 3.

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

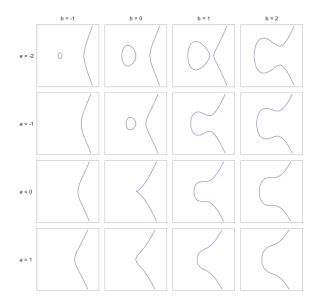
Isaac Newton (1643-1727)

 1710: classifies algebraic curves over Q of degree 3, showing by that by applying rational transformations to x and y, these curves can always be written as

$$y^2 = x^3 + ax + b$$

for some $a, b \in \mathbb{Z}$.

Examples of algebraic curves of degree 3



Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

c.1829: Abel and Jacobi construct the Jacobian of a curve.

Diophantine equations through the ages: two variables

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

c.1829: Abel and Jacobi construct the Jacobian of a curve.

The Jacobian is an additive group containing the curve itself

Diophantine equations through the ages: two variables

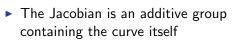
Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

c.1829: Abel and Jacobi construct the Jacobian of a curve.



Jacobians are examples of *abelian varieties*

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$x^d+a_{d-1}x^{d-1}+\cdots+a_1x+a_0=0, \quad a_i\in\mathbb{Z}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interlude: Algebraic integers

Definition

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \quad a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \quad a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

Definition

If μ is a solution of an equation as above for which *all* the solutions are positive, then μ is *totally positive*.

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \ a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

Definition

If μ is a solution of an equation as above for which *all* the solutions are positive, then μ is *totally positive*.

Non-Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$,

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \quad a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

Definition

If μ is a solution of an equation as above for which *all* the solutions are positive, then μ is *totally positive*.

Non-Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$, for which the other solution is $1 - \sqrt{2}$.

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \quad a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

Definition

If μ is a solution of an equation as above for which *all* the solutions are positive, then μ is *totally positive*.

Non-Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$, for which the other solution is $1 - \sqrt{2}$.

Example: $\mu = 2 + \sqrt{2}$ is a solution of $x^2 - 4x + 2$,

An algebraic integer μ is a solution of an equation

$$x^{d} + a_{d-1}x^{d-1} + \cdots + a_{1}x + a_{0} = 0, \quad a_{i} \in \mathbb{Z}.$$

Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$.

Definition

If μ is a solution of an equation as above for which *all* the solutions are positive, then μ is *totally positive*.

Non-Example: $\mu = 1 + \sqrt{2}$ is a solution of $x^2 - 2x - 1$, for which the other solution is $1 - \sqrt{2}$.

Example: $\mu = 2 + \sqrt{2}$ is a solution of $x^2 - 4x + 2$, for which the other solution is $2 - \sqrt{2}$.

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that

• μ is real, and

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that

- μ is real, and
- µ is totally positive,

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that
 - μ is real, and
 - µ is totally positive,

we can construct an abelian variety A'

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that
 - μ is real, and
 - µ is totally positive,

we can construct an abelian variety A' and a map to it called a μ -isogeny.

Definition

We define an algebraic curve over ${\mathbb Q}$ to be a curve that can be written as

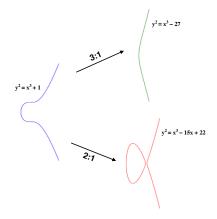
$$f(x,y)=0,$$

where $f \in \mathbb{Z}[x, y]$.

- The Jacobian of a curve contains the curve itself
- Jacobians are examples of abelian varieties
- Q: When can we construct a 'nice' map between 2 abelian varieties?
- A: Take an abelian variety A. Then given an algebraic integer µ (of the right degree) such that
 - μ is real, and
 - µ is totally positive,

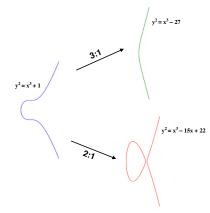
we can construct an abelian variety A' and a map to it called a μ -isogeny.

Two μ -isogenies of algebraic curves of degree 3



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Two μ -isogenies of algebraic curves of degree 3



These maps are explicit, for example the top map is:

$$(x,y)\mapsto\left(rac{x^3+4}{x^2},rac{x^3y-8y}{x^3}
ight).$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.

In some cases we can construct a map between abelian varieties called a µ-isogeny.

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.

In some cases we can construct a map between abelian varieties called a µ-isogeny.

Definition

A μ -isogeny graph over \mathbb{F}_p is a graph with

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.

In some cases we can construct a map between abelian varieties called a µ-isogeny.

Definition

- A μ -isogeny graph over \mathbb{F}_p is a graph with
 - vertices given by abelian varieties over \mathbb{F}_p

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a µ-isogeny.

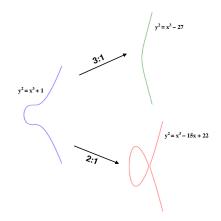
- A μ -isogeny graph over \mathbb{F}_p is a graph with
 - ▶ vertices given by abelian varieties over 𝔽_p (e.g. algebraic curves of degree 3 mod p)

- The Jacobian of a curve contains the curve.
- Jacobians of algebraic curves are examples of abelian varieties.
- In some cases we can construct a map between abelian varieties called a µ-isogeny.

- A μ -isogeny graph over \mathbb{F}_p is a graph with
 - ▶ vertices given by abelian varieties over 𝔽_p (e.g. algebraic curves of degree 3 mod p), and

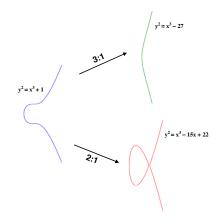
• edges given by μ -isogenies.

Example



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example



We can draw a 3-isogeny graph of the top isogeny:

And a 2-isogeny graph of the bottom isogeny:

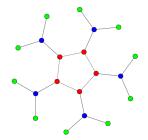
Definition

We define a *volcano graph* to be a symmetric graph that:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

We define a *volcano graph* to be a symmetric graph that:

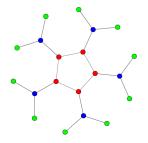


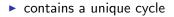
(日)、

э.

Definition

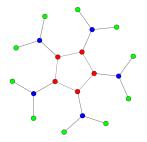
We define a volcano graph to be a symmetric graph that:





Definition

We define a volcano graph to be a symmetric graph that:



- contains a unique cycle, and
- has exactly v edges from every vertex, except for the vertices joined to the cycle by a path of exactly d edges, from which there is exactly 1 edge.

Definition

For μ a real totally positive algebraic integer, we define G to be the μ -isogeny graph over \mathbb{F}_p with the maximum number of vertices and edges.

Definition

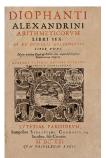
For μ a real totally positive algebraic integer, we define G to be the μ -isogeny graph over \mathbb{F}_p with the maximum number of vertices and edges.

Theorem (Kohel 1996)

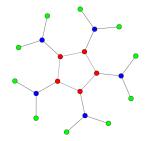
If $\mu \in \mathbb{Z}$, then the connected components of G are volcano graphs.

Theorem (M. 2016)

The connected components of G are volcano graphs.



Thank you!



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

In my thesis, we see how to 'walk around' these graphs

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
 - Work in progress: counting points on algebraic curves of degree 5 and 6

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
 - Work in progress: counting points on algebraic curves of degree 5 and 6
 - Construction of elliptic units for algebraic curves of degree 5 and 6 (and higher?)

- In my thesis, we see how to 'walk around' these graphs
- Starting point for many projects extending ideas for degree 3, for example
 - Work in progress: counting points on algebraic curves of degree 5 and 6
 - Construction of elliptic units for algebraic curves of degree 5 and 6 (and higher?)

Explicit descent via µ-isogeny