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This talk was presented at the Local Langlands Seminar at Leiden University
in May 2015, organised by Santosh Nadimpalli and Carlo Pagano. It is largely
based on the lecture notes of Bas Edixhoven from a course taught at the Summer
School and Conference on Automorphic Forms and Shimura Varieties in Trieste
in 2007, see [Edi07]. The author would like to thank Bas Edixhoven for helping
me with some of the material. The author welcomes any corrections.

1 Motivation and Background

Constructing the Galois representation associated to modular forms will lead us
to local Langlands correspondances, both `-adic and conjecturally p-adic. We
will vaguely state two theorems which show this correspondence, before giving
the background knowledge of modular forms necessary to construct this Galois
representation.
For any prime `, denote by ρf,` the Galois representation associated to a modular
form f . This will turn out to be a representation of the form

ρf,` : GQ → GL2(V ),

where V is a prescribed Q`-vector space depending on f . Then, as we saw in
an earlier lecture of Santosh Nadimpalli, for any prime p, we can restrict this
representation to GQp

, and we define

(ρf,`)p := ρf,`|GQp
.
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We have the following result for p 6= `.

Theorem 1.1 (Langlands, Deligne, Carayol). For any prime `, any prime p 6=
`, and f a modular form, there is a prescribed representation πf,p of GL2(Qp)
such that (ρf,`)

(F.s.s.)
p corresponds under a suitably normalized Langlands corre-

spondence to πf,p, where F.s.s. denotes Frobenius semi-simplification.

Remark 1.2 (Frobenius semi-simplification). If there is a representation
α : GQp

→ Q̄∗` such that (ρf,`)p ⊗ α is unramified, then
(
(ρf,`)p ⊗ α

)
(Frobp)

is semi-simple. Conjecturally the Frobenius semi-simplification in the above
theorem is not necessary.

Furthermore, we have the following theorem for p = `:

Theorem 1.3 (Saito). For any prime p, let Weil-Deligne representation asso-
ciated to (ρf,p)p, be denoted by WD(ρf,p)p. Then we have a correspondence

(WD(ρf,p)p)
(F.s.s.) ↔ πf,p,

where F.s.s. denotes Frobenius semi-simplification and πf,p is as in Theorem 1.1.

Remark 1.4. If we could find the right hand side of the above correspondence
for (ρf,p)p, this would be a p-adic Langlands correspondence.

For the remainder of this talk, we will recall the background knowledge required
to construct ρf,`.

2 Modular Curves

Throughout this talk, H will denote the complex upper half plane and GL+
2 (R)

will denote the general linear group of dimension two with real coefficients whose
elements have positive determinant.

Definition 2.1. Let Γ ≤ SL2(Z). Then Γ is a congruence subgroup if there
exists N ∈ Z>0 such that Γ(N) ⊂ Γ, where

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
.

Examples 2.2. Two key examples of congruence subgroups are the following:

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
mod N

}
,

and

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.
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Given a congruence subgroup Γ, one can check that it acts on H via Mobius
transformations, which allows us to define the modular curve

YΓ(C) := Γ\H.

It is a non-trivial fact that for any congruence subgroup Γ we have a correspon-
dence

YΓ(C)↔
{

(E/C, φ ∈ Γ\Isom+(Z2,H1(E,Z)))
}
/∼= ,

where E denotes an elliptic curve. For our two examples of congruence sub-
groups above this becomes

Y1(N) := YΓ1(N)(C) = {(E,P ) : P ∈ E has order N}/∼=

and

Y0(N) := YΓ0(N)(C) = {(E,G) : G ⊂ E a cyclic subgroup of order N}/∼=.

Further, we can add a finite number of points, called cusps, to ‘compactify’
YΓ(C). This gives compact projective algebraic curve denoted by XΓ(C), i.e.

XΓ(C) = YΓ(C) ∪ Γ\P1(Q).

3 Modular Forms

We will briefly recall the standard definition of modular forms and cusp forms,
and then give an alternative way of defining cusp forms (for the case in which Γ
acts freely on H and acts regularly at the cusps) as global sections of modular
curves.

Definition 3.1. Let k ∈ Z, f : H→ C be a function and

α =

(
∗ ∗
c d

)
∈ GL+

2 (R). Then for all z ∈ H,

(f |[α]k)(z) := det(α)k−1(cz + d)−kf(α · z).

Definition 3.2. Let k ∈ Z≥0, Γ a congruence subgroup. A modular form of
weight k with respect to Γ is a function f : H→ C satisfying
(i) f holomorphic on H
(ii) For all γ ∈ Γ, f |[γ]k = f
(iii) f is holomorphic at all the cusps.

Remark 3.3. We define f being holomorphic at the cusps in the following way.

We know that there is an h ∈ Z>0 such that

(
1 h
0 1

)
∈ Γ, and hence for any

z ∈ H, f(z + h) = f(z). Therefore f has a Fourier expansion at infinity,

f(z) =

∞∑
n=−∞

anq
n
h ,
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where qh := e2πiz/h. Then f is defined to be holomorphic at infinity if for every
n < 0, an = 0, and f is defined to be holomorphic at all the cusps if for every
α ∈ SL2(Z), f |[α]k is holomorphic at infinity.

We denote byMk(Γ) the space of all modular forms of weight k with respect
to Γ, and by Sk(Γ) the space of all cusp forms of weight k with respect to Γ,
where a cusp form is a modular form that vanishes at all the cusps.

Examples 3.4. Examples of modular forms are
• Eisenstein series. In fact the Eisenstein of weight 4 and 6, E4 and E6, generate
all of Mk(Γ), telling us the dimension of this space for any k.
• ‘The Ramanujan τ -function’, which is

∆(z) = q

∞∏
n=1

(1− qn)24 = 1/1728(E3
4 − E2

6) ∈ S12(Γ1(1)),

where q = e2πiz.
• Cusp forms can be obtained via Hecke characters.. see next weeks lecture!

We now turn to the alternative (equivalent) definition of the space of cusp
forms of weight k with respect to Γ, where Γ is a congruence subgroup which
acts freely on H and acts regularly at the cusps. This holds for Γ1(N) when
N ≥ 5 but never for Γ0(N). That the two definitions are equivalent is left as
an exercise...
Let E be defined as follows;

E = {(P, τ) : τ ∈ H, P ∈ C/Zτ + Z}.

Then consider the following:

Z2 ×H � � //

%%KKKKKKKKKK C×H // //

��

E

||yy
yy

yy
yy

y

H

(1)

where
Z2 ×H ↪→ C×H

((n,m), τ) 7→ (nτ +m, τ),

and the map C × H → E is just the quotient map. Then if Γ acts freely on H
we get an elliptic curve E→ YΓ(C) by taking the quotient. Define the Γ action
on Z2 ×H by

((n,m), τ) 7→ ((n,m)γ−1, γ · τ)

and on C×H by
(z, τ) 7→ (z/cτ + d, τ),

where γ =

(
∗ ∗
c d

)
∈ Γ. Let

H 0 //___ E

be the zero section of the projection E→ H, and define ω = 0∗Ω1
E/H.
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Lemma 3.5. We have
ω = OHdz.

Proof. To consider an open neighbourhood of 0 on E, we can take the (open)
fundamental domain of its defining lattice, and translate it by −(1 + τ)/2, so
that 0 lies at the centre. This set is also a open neighbourhood of 0 in C, and so
locally at 0, the map C×H→ E from Diagram 1 is an isomorphism. Therefore

0∗Ω1
E/H = 0∗Ω1

C×H/H.

Now the diagram

C×H h //

��

C× {·}

��
H // ·

gives us that
0∗Ω1

C×H/H = 0∗h∗Ω1
C = 0∗OC×Hdz = OHdz.

To understand to Γ-action on ω we first look at the Γ-action on dz. Let(
∗ ∗
c d

)
∈ Γ. Then we have

γ : C⊗H → C⊗H
(z, τ) 7→ (z/cτ + d, γτ),

and so
(γ·)∗dz = d(γz) = dz/cz + d.

Now let f ∈ OH. Then f(dz)⊗k ∈ ω⊗k and

(γ·)∗(f(dz)⊗k) = (f ◦ γ)(cτ + d)−k(dz)⊗k,

so in particular f(dz)⊗k is Γ-invariant if and only if for all γ in Γ, (f ◦ γ)(τ) =
(cτ + d)kf(τ). Then if Γ acts freely on H, ω is defined on YΓ(C), and if Γ acts
regularly at the cusps, then ω is defined on XΓ(C).

Remark 3.6 (Acts regularly at the cusps). Here, ‘acts regularly at the cusps’
means

SL2(Z)∞ =

{
±
(

1 ∗
0 1

)}
.

Finally, we get

Definition 3.7. For an integer k ≥ 2, and Γ a congruence subgroup which acts
freely on H and acts regularly at the cusps, define the space of cusp forms of
weight k with respect to Γ by

Sk(Γ) = H0(XΓ(C), ω⊗k(−cusps)).
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Lemma 3.8 (Kodaira-Spencer). We have an isomorphism of OH-modules

ω⊗k(−cusps) ∼= Ω1
XΓ(C) ⊗ ω

⊗(k−2).

Sketch. By Lemma 3.5 we have that ω⊗2 = OHdz⊗2, hence as Ω1
H
∼= OHdτ , we

have an OH-module isomorphism

ω⊗2 ∼= Ω1
H.

Now let γ =

(
a b
c d

)
∈ Γ. Then

(γ·)∗(dz)⊗2 = d(γz)⊗2 = (dz/(cz + d))⊗2 = (dz)⊗2/(cτ + d)2,

and
(γ·)∗dτ = d(γτ) = dτ/(cz + d)2,

hence they are also equivalent up to Γ-action. A further calculation to determine
what happens at the cusps (omitted) then gives

ω⊗2(−cusps) ∼= Ω1
XΓ(C).

As (−cusps) commutes with tensor products, the result now follows.

Corollary 3.9. For an integer k ≥ 2, and Γ a congruence subgroup which acts
freely on H and acts regularly at the cusps, we have

Sk(Γ) = H0(XΓ(C),Ω1
XΓ(C) ⊗ ω

⊗(k−2)).

4 Hecke Operators

A crucial tool in the construction of the Galois representation of a modular form
will be Hecke operators. They give rise to modular correspondences and they
act on modular forms and the integral homology of modular curves. They can
be realised in many different ways, and the consistency with which this is done
makes them very interesting! To define Hecke operators on modular forms, we
first show how to decompose Mk(Γ1(N) and Sk(Γ1(N) into a direct sum of
eigenspaces.

Definition 4.1. Let χ be a Dirichlet character mod N , that is, a group homo-
morphism χ : (Z/NZ)∗ → C∗. Then a modular form of type (k,N, χ) is

f ∈Mk(Γ1(N)) such that for all γ =

(
∗ ∗
∗ d

)
∈ Γ0(N),

(f |[γ]k)(z) = χ(d)f(z).
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The space of all such modular forms is denoted by Mk(N,χ). Let

d ∈ (Z/NZ)∗, and define d =

(
d−1 0
0 d

)
mod N . Then d acts onMk(Γ1(N))

by [d]k : f 7→ f |[d]k , andMk(N,χ) is the χ-eigenspace with respect to the action.
Further, we get the direct sum decomposition

Mk(Γ1(N)) =
⊕

χ(−1)=(−1)k

Mk(N,χ).

Following exactly the same procedure for cusp forms, we get

Sk(Γ1(N)) =
⊕

χ(−1)=(−1)k

Sk(N,χ).

Definition 4.2. Let

∆1(N) =

{
γ ∈M2(Z) : γ ≡

(
1 ∗
0 ∗

)
mod N, det(γ) > 0

}
,

and set Γ = Γ1(N). Let f ∈ Mk(Γ1(N)) and α ∈ ∆1(N). Define the Hecke
operator by

T : f 7→ f |[ΓαΓ]k =
∑
i

f |[αi]k ,

where {αi} is a set of coset representatives for Γ\ΓαΓ. Then one can show that
[ΓαΓ]k acts on Mk(Γ) and preserves Sk(Γ).

Definition 4.3. The Jacobian variety of XΓ(C) is given by

JΓ(C) = H0(XΓ(C),Ω1
XΓ(C))

∨/H1(XΓ(C,Z),

so by the Kodaira-Spencer isomorphism, if Γ acts freely on H and regularly at
the cusps,

JΓ(C) = S2(Γ)∨/H1(XΓ(C),Z).

So now we look at Hecke operators as endomorphisms of JΓ(C). We use
without proof that

JΓ(C) = Pic0(XΓ(C)) = Div0(XΓ(C))/principal divisors,

so in particular we can write an element of JΓ(C) as P1 + · · ·+ Pd − d · ∞, where
the Pi are in X1(N).

Definition 4.4. We define the Hecke operator on modular curves in a corre-
sponding way to how we defined it for modular forms, that is,

Tn X1(N) → X0(n)

(E,P ) 7→
∑

G⊂E order n
s.t.<P>∩G=0

(E/G,P ).

This induces a map Tn ∈ End(JΓ1(N)(C)) via

Tn : P1 + · · ·Pd − d · ∞ 7→ TnP1 · · ·TnPd − dTn∞.
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