Quantum attacks on isogeny-based cryptography

Chloe Martindale

University of Bristol

Based on joint work with Daniel J. Bernstein, Tanja Lange, and Lorenz Panny

quantum.isogeny.org

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Smallest keys of all post-quantum key exchange candidates
- ► Competitive speed: 50-60ms for a full key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Idea:

Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S.$$

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Idea:

Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S.$$

Cycles are compatible: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

• $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p - \{\pm 2\}$ are examples of elliptic curves.

- $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p \{\pm 2\}$ are examples of elliptic curves.
 - The set of \mathbb{F}_p -rational points of E_A form a group $E_A(\mathbb{F}_p)$.

- $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p \{\pm 2\}$ are examples of elliptic curves.
 - The set of \mathbb{F}_p -rational points of E_A form a group $E_A(\mathbb{F}_p)$.
 - If $\#E_A(\mathbb{F}_p) = p + 1$ then E_A is supersingular.

- $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p \{\pm 2\}$ are examples of elliptic curves.
 - The set of \mathbb{F}_p -rational points of E_A form a group $E_A(\mathbb{F}_p)$.
 - If $\#E_A(\mathbb{F}_p) = p + 1$ then E_A is supersingular.
- A rational map $E_A \rightarrow E_B$ is an isogeny if it preserves the group structure and is surjective.

- $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p \{\pm 2\}$ are examples of elliptic curves.
 - The set of \mathbb{F}_p -rational points of E_A form a group $E_A(\mathbb{F}_p)$.
 - If $\#E_A(\mathbb{F}_p) = p + 1$ then E_A is supersingular.
- A rational map $E_A \rightarrow E_B$ is an isogeny if it preserves the group structure and is surjective.
 - ► Isogenies have finite kernel.

- $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $A \in \mathbb{F}_p \{\pm 2\}$ are examples of elliptic curves.
 - The set of \mathbb{F}_p -rational points of E_A form a group $E_A(\mathbb{F}_p)$.
 - If $\#E_A(\mathbb{F}_p) = p + 1$ then E_A is supersingular.
- A rational map $E_A \rightarrow E_B$ is an isogeny if it preserves the group structure and is surjective.
 - ► Isogenies have finite kernel.
 - Vélu's formulas:

generators of kernel \rightsquigarrow rational maps

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace Z by a commutative group H that acts by isogenies.*

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace Z by a commutative group H that acts by isogenies.*
- ► The action of a well-chosen h ∈ H on S moves the elliptic curves one step around one of the cycles.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace Z by a commutative group H that acts by isogenies.*
- ► The action of a well-chosen h ∈ H on S moves the elliptic curves one step around one of the cycles.

*Die-hards: $H = cl(End_{\mathbb{F}_p}(E)) = cl(\mathbb{Z}[\sqrt{-p}])$; an ideal class $[I] \in H$ defines the kernel.

► Hard problem in CSIDH: given group action

 $H \times S \rightarrow S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► Hard problem in CSIDH: given group action

 $H \times S \rightarrow S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► [CJS]: this is a dihedral hidden subgroup problem (DHSP).

► Hard problem in CSIDH: given group action

 $H \times S \rightarrow S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: $\mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$

► Hard problem in CSIDH: given group action

$$H \times S \to S$$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: $\mathbb{Z}/n\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$ where

▶ $\varphi : \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(\mathbb{Z}/n\mathbb{Z})$ a homomorphism, and

$$\begin{array}{cccc} & \bullet & (\mathbb{Z}/n\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/n\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}/2\mathbb{Z}) & \to & \mathbb{Z}/n\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}/2\mathbb{Z} \\ & & (a_{1},b_{1}), (a_{2},b_{2}) & \mapsto & (a_{1}\varphi(b_{1})(a_{2}), b_{1}b_{2}). \end{array}$$

► CSIDH: given cyclic *H* and group action

 $H\times S\to S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► CSIDH: given cyclic *H* and group action

 $H\times S\to S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► Define $\varphi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(H)$ $a \mapsto (h \mapsto h^{(-1)^a}).$

► CSIDH: given cyclic *H* and group action

 $H\times S\to S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

- ► Define $\varphi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(H)$ $a \mapsto (h \mapsto h^{(-1)^a}).$
- ► Define $f: H \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z} \to S$ $(h,a) \mapsto h \cdot s_a.$

► CSIDH: given cyclic *H* and group action

 $H\times S\to S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► Define $\varphi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(H)$ $a \mapsto (h \mapsto h^{(-1)^a}).$

► Define
$$f: H \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z} \to S$$

 $(h,a) \mapsto h \cdot s_{a}.$

• Now

$$f(h,a) = f(h',a') \Leftrightarrow a = 0, a' = 1, h' = h\chi, \text{ or } a = 1, a' = 0, h = h'\chi, \text{ or } a = a' = 1, h = h'.$$

 $\rightsquigarrow f$ hides the subgroup $\{(1,0), (\chi,1)\} \subset H \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z}$.

► CSIDH: given cyclic *H* and group action

 $H\times S\to S$

and $s_0, s_1 \in S$, find $\chi \in H$ such that $\chi \cdot s_0 = s_1$.

► Define $\varphi: \mathbb{Z}/2\mathbb{Z} \to \operatorname{Aut}(H)$ $a \mapsto (h \mapsto h^{(-1)^a}).$

► Define
$$f: H \rtimes_{\varphi} \mathbb{Z}/2\mathbb{Z} \to S$$

 $(h,a) \mapsto h \cdot s_{a}.$

- -

Now
$$f(h,a) = f(h',a') \Leftrightarrow a = 0, a' = 1, h' = h\chi, \text{ or}$$
$$a = 1, a' = 0, h = h'\chi, \text{ or}$$
$$a = a' = 1, h = h'.$$

→ *f* hides the subgroup {(1,0), (χ, 1)} ⊂ H ⋊_φ ℤ/2ℤ.
Finding subgroup hidden by *f* gives secret χ.

- - $\exp((\log_2 n)^{1/2+o(1)})$ queries

- - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- ► 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: 2^{(√2+o(1))}√^{log₂n}.

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- ► 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: 2^{(√2+o(1))}√^{log₂n}.

Main open questions on asymptotic complexity:

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- ► 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: 2^{(√2+o(1))}√^{log₂n}.

Main open questions on asymptotic complexity:

► Can the power of log₂ *n* be reduced?

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- ▶ 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: 2^{(√2+o(1))}√^{log₂n}.

Main open questions on asymptotic complexity:

- ► Can the power of log₂ *n* be reduced?
- If not, can the constant $\sqrt{2}$ be improved?

- ▶ 2003: Kuperberg gives quantum algorithm for DHSP in Z/nZ ⋊_φ Z/2Z using
 - $\exp((\log_2 n)^{1/2+o(1)})$ queries
 - $\exp((\log_2 n)^{1/2+o(1)})$ ops on $\exp((\log_2 n)^{1/2+o(1)})$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- ▶ 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: 2^{(√2+o(1))}√^{log₂n}.

Main open questions on asymptotic complexity:

- ► Can the power of log₂ *n* be reduced?
- If not, can the constant $\sqrt{2}$ be improved?
- ► If not, what's the smallest o(1)?

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

Subquestions:

• Exactly how many queries needed?

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

- Exactly how many queries needed?
- ► How expensive is each CSIDH query?

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

- Exactly how many queries needed?
- ► How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

- Exactly how many queries needed?
- ► How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

- Exactly how many queries needed?
- ► How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

What CSIDH key sizes are needed for concrete post-quantum security levels 2⁶⁴? 2⁹⁶? 2¹²⁸?

- Exactly how many queries needed?
- How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

How expensive is each CSIDH query?

Secret key: path on the graph Public key: end points of path One query: computes many paths in superposition

Computing isogenies

Aim: given curve E_A , find a neighbour in the isogeny graph

Edges: 3-, 5-, and 7-isogenies.

Computing isogenies

Aim: given curve E_A , find a neighbour in the 3-isogeny graph

Edges: 3-isogenies.

Computing isogenies

Aim: given curve E_A , find a neighbour in the 3-isogeny graph

• Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{2}{3}$, 140 · *P* has order 3

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Using Vélu's formulas, find map with kernel = $\langle 140 \cdot P \rangle$

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Using Vélu's formulas, find map with kernel = $\langle 140 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{2}{3}$, 140 · *P* has order 3
- Using Vélu's formulas, find map with kernel = $\langle 140 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{4}{5}$, 84 · *P* has order 5
- Using Vélu's formulas, find map with kernel = $\langle 84 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{4}{5}$, 84 · *P* has order 5
- Using Vélu's formulas, find map with kernel = $\langle 84 \cdot P \rangle$
- Image of map is a neighbour

- Recall: $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$.
- Choose a random \mathbb{F}_{419} -point P = (x, y) on E_{51}
- ► *P* has order dividing 420.
- With probability $\frac{6}{7}$, 60 · *P* has order 7
- Using Vélu's formulas, find map with kernel = $\langle 60 \cdot P \rangle$
- Image of map is a neighbour

Aim: given curve E_A , find a neighbour in the ℓ -isogeny graph

- Recall: $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$
- Choose a random \mathbb{F}_p -point P = (x, y) on E_A
- *P* has order dividing p + 1.
- With probability $\frac{\ell-1}{\ell}$, $\frac{p+1}{\ell} \cdot P$ has order ℓ .*
- Using Vélu's formulas, find map with kernel = $\langle \frac{p+1}{\ell} \cdot P \rangle$
- Image of map is a neighbour

* assuming $\ell | (p+1)$.

• A query computes paths in superposition.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- Isogeny computation fails often for small ℓ .

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- ► Isogeny computation fails often for small *l*.
 ~→ problematic for quantum implementation.

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- ► Larger degree isogenies are more expensive. Different degrees computed in superposition
 → bored qubits.
- ► Isogeny computation fails often for small *l*.
 → problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex variants-trying to mitigate these problems.

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of		sequence of		sequence of
basic bit ops	\rightsquigarrow	reversible ops	\rightsquigarrow	reversible ops
with $\leq \overline{B}$		with $\leq 2\bar{B}$		with $\leq 14\overline{B}$
nonlinear ops		Toffoli ops		T-gates

Why this generic conversion?

Unknown expense of extra O(B) measurements in context of surface-code error correction

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of		sequence of		sequence of
basic bit ops	\rightsquigarrow	reversible ops	\rightsquigarrow	reversible ops
with $\leq \overline{B}$		with $\leq 2\bar{B}$		with $\leq 14\overline{B}$
nonlinear ops		Toffoli ops		T-gates

Why this generic conversion?

Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:

How much faster than the generic conversion is possible?

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

• Note that each ℓ_i divides p + 1.

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

 $765325228976 \approx 0.7 \cdot 2^{40}$

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

 $765325228976 \approx 0.7 \cdot 2^{40}$

nonlinear bit operations. Previous record was 2⁵¹.

• Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

 $765325228976 \approx 0.7 \cdot 2^{40}$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

 $765325228976 \approx 0.7 \cdot 2^{40}$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.

• Here the finite field is \mathbb{F}_p with

$$p=4\cdot\ell_1\cdots\ell_{74}-1,$$

where $\ell_1, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_i divides p + 1.
- For an error rate of $< 2^{-32}$, our best algorithm requires

 $765325228976 \approx 0.7 \cdot 2^{40}$

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.
- Number of queries: $\approx 2^{19.3}$ using $\approx 2^{32}$ bits of QRACM [P].

• [BLMP] gives oracle costs for error rates 2^{-1} , 2^{-32} , 2^{-256} .

Oracle errors

- [BLMP] gives oracle costs for error rates 2^{-1} , 2^{-32} , 2^{-256} .
- Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.

Oracle errors

- [BLMP] gives oracle costs for error rates 2^{-1} , 2^{-32} , 2^{-256} .
- Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.
- Advances in quantum error correction would also massively change the complexity.

Open questions: summary

- ► How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- ► Is there a quantum algorithm that does better than L(1/2)?
 - Should be difficult: this would also decrease the security of all lattice proposals.
- Can we decrease the cost of one query?

Open questions: summary

- ► How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- ► Is there a quantum algorithm that does better than L(1/2)?
 - Should be difficult: this would also decrease the security of all lattice proposals.
- Can we decrease the cost of one query?

Thank you!

References

[BLMP] Bernstein, Lange, Martindale, and Panny, *Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies*, Eurocrypt 2019, quantum.isogeny.org.

[CLMPR] Castryck, Lange, Martindale, Panny, and Renes, *CSIDH: An efficient post-quantum commutative group action*, Asiacrypt 2018, csidh.isogeny.org.

 [CJS] Childs, Jao, and Soukharev, *Constructing elliptic curve isogenies in quantum subexponential time*, J. Math. Crypto 2014, arxiv.org/abs/1012.4019.

[P] Peikert,

He gives C-sieves on the CSIDH, Eurocrypt 2020, ia.cr.org/2019/725.

Credits to my coauthors Daniel J. Bernstein, Tanja Lange, and Lorenz Panny for many of the contents of this presentation.