Quantum attacks on isogeny-based cryptography

Chloe Martindale

University of Bristol

Based on joint work with
Daniel J. Bernstein, Tanja Lange, and Lorenz Panny

quantum.isogeny.org

Why CSIDH?

- Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly
- Smallest keys of all post-quantum key exchange candidates
- Competitive speed: $50-60 \mathrm{~ms}$ for a full key exchange

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Idea:
Replace exponentiation on the group G by a group action of a group H on a set S :

$$
H \times S \rightarrow S
$$

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Idea:
Replace exponentiation on the group G by a group action of a group H on a set S :

$$
H \times S \rightarrow S
$$

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Square-and-multiply

Square-and-multiply

Square-and-multiply

Cycles are compatible: [right, then left $]=[l e f t$, then right $]$, etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

Graphs of elliptic curves

Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Graphs of elliptic curves

Nodes: Supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}. Edges: 3-, 5-, and 7-isogenies.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.
- The set of \mathbb{F}_{p}-rational points of E_{A} form a group $E_{A}\left(\mathbb{F}_{p}\right)$.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.
- The set of \mathbb{F}_{p}-rational points of E_{A} form a group $E_{A}\left(\mathbb{F}_{p}\right)$.
- If $\# E_{A}\left(\mathbb{F}_{p}\right)=p+1$ then E_{A} is supersingular.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.
- The set of \mathbb{F}_{p}-rational points of E_{A} form a group $E_{A}\left(\mathbb{F}_{p}\right)$.
- If $\# E_{A}\left(\mathbb{F}_{p}\right)=p+1$ then E_{A} is supersingular.
- A rational map $E_{A} \rightarrow E_{B}$ is an isogeny if it preserves the group structure and is surjective.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.
- The set of \mathbb{F}_{p}-rational points of E_{A} form a group $E_{A}\left(\mathbb{F}_{p}\right)$.
- If $\# E_{A}\left(\mathbb{F}_{p}\right)=p+1$ then E_{A} is supersingular.
- A rational map $E_{A} \rightarrow E_{B}$ is an isogeny if it preserves the group structure and is surjective.
- Isogenies have finite kernel.

Graphs of elliptic curves

- $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$ with $A \in \mathbb{F}_{p}-\{ \pm 2\}$ are examples of elliptic curves.
- The set of \mathbb{F}_{p}-rational points of E_{A} form a group $E_{A}\left(\mathbb{F}_{p}\right)$.
- If $\# E_{A}\left(\mathbb{F}_{p}\right)=p+1$ then E_{A} is supersingular.
- A rational map $E_{A} \rightarrow E_{B}$ is an isogeny if it preserves the group structure and is surjective.
- Isogenies have finite kernel.
- Vélu's formulas:
generators of kernel \rightsquigarrow rational maps

Graphs of elliptic curves

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{rll}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{rll}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H that acts by isogenies.*

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{aligned}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{aligned}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H that acts by isogenies.*
- The action of a well-chosen $h \in H$ on S moves the elliptic curves one step around one of the cycles.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H that acts by isogenies.*
- The action of a well-chosen $h \in H$ on S moves the elliptic curves one step around one of the cycles.
${ }^{*}$ Die-hards: $H=\operatorname{cl}\left(\operatorname{End}_{\mathbb{F}_{p}}(E)\right)=\operatorname{cl}(\mathbb{Z}[\sqrt{-p}])$;an ideal class $[I] \in H$ defines the kernel.

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

> Bob
> $[+,+,-,+]$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

Bob
$\underset{\uparrow}{[+,+,-,+]}$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+, \underset{\uparrow}{-},+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{Bob} \\
{[+, \stackrel{+}{\uparrow},-,+]}
\end{gathered}
$$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

> Bob
> $[+,+, \underset{\uparrow}{-},+]$

Diffie-Hellman on 'nice' graphs

> Alice
> $\left[+,-,+,-\frac{-}{\uparrow}\right]$

> Bob
> $[+,+,-,++]$

Diffie-Hellman on 'nice' graphs

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[+,+,-,+]}
\end{gathered}
$$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+, \underset{\uparrow}{-},+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{[+, \underset{\uparrow}{+},-,+]}
\end{gathered}
$$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{Bob} \\
{[+,+, \underset{\uparrow}{-},+]}
\end{gathered}
$$

Diffie-Hellman on 'nice' graphs

> Alice
> $\left[+,-,+,-\frac{-}{\uparrow}\right]$

> Bob
> $[+,+,-,+]$

Diffie-Hellman on 'nice' graphs

$$
\begin{gathered}
\text { Alice } \\
{[+,-,+,-]}
\end{gathered}
$$

> Bob
> $[+,+,-,+]$

Quantum security: from CSIDH to DHSP

- Hard problem in CSIDH: given group action

$$
\begin{gathered}
H \times S \rightarrow S \\
\text { and } s_{0}, s_{1} \in S \text {, find } \chi \in H \text { such that } \chi \cdot s_{0}=s_{1} .
\end{gathered}
$$

Quantum security: from CSIDH to DHSP

- Hard problem in CSIDH: given group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Quantum security: from CSIDH to DHSP

- Hard problem in CSIDH: given group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$

Quantum security: from CSIDH to DHSP

- Hard problem in CSIDH: given group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ where

- $\varphi: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} / n \mathbb{Z})$ a homomorphism, and

$$
\begin{array}{ccc}
\left(\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}\right) \times\left(\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}\right) & \rightarrow & \mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z} \\
\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right) & \mapsto & \left(a_{1} \varphi\left(b_{1}\right)\left(a_{2}\right), b_{1} b_{2}\right) .
\end{array}
$$

Quantum security: from CSIDH to DHSP

- CSIDH: given cyclic H and group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

Quantum security: from CSIDH to DHSP

- CSIDH: given cyclic H and group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- Define

$$
\begin{array}{ccc}
\varphi: \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & \operatorname{Aut}(H) \\
a & \mapsto & \left(h \mapsto h^{(-1)^{a}}\right) .
\end{array}
$$

Quantum security: from CSIDH to DHSP

- CSIDH: given cyclic H and group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- Define

$$
\begin{array}{ccc}
\varphi: \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & \operatorname{Aut}(H) \\
a & \mapsto & \left(h \mapsto h^{(-1)^{a}}\right) .
\end{array}
$$

- Define

$$
\begin{array}{ccc}
f: H \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & S \\
(h, a) & \mapsto & h \cdot s_{a} .
\end{array}
$$

Quantum security: from CSIDH to DHSP

- CSIDH: given cyclic H and group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- Define

$$
\begin{array}{ccc}
\varphi: \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & \operatorname{Aut}(H) \\
a & \mapsto & \left(h \mapsto h^{(-1)^{a}}\right) .
\end{array}
$$

- Define

$$
\begin{array}{ccc}
f: H \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & S \\
(h, a) & \mapsto & h \cdot s_{a} .
\end{array}
$$

- Now

$$
\begin{aligned}
f(h, a)=f\left(h^{\prime}, a^{\prime}\right) \Leftrightarrow a & =0, a^{\prime}=1, h^{\prime}=h \chi, \text { or } \\
a & =1, a^{\prime}=0, h=h^{\prime} \chi, \text { or } \\
a & =a^{\prime}=1, h=h^{\prime} .
\end{aligned}
$$

$\rightsquigarrow f$ hides the subgroup $\{(1,0),(\chi, 1)\} \subset H \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$.

Quantum security: from CSIDH to DHSP

- CSIDH: given cyclic H and group action

$$
H \times S \rightarrow S
$$

and $s_{0}, s_{1} \in S$, find $\chi \in H$ such that $\chi \cdot s_{0}=s_{1}$.

- Define

$$
\begin{array}{ccc}
\varphi: \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & \operatorname{Aut}(H) \\
a & \mapsto & \left(h \mapsto h^{(-1)^{a}}\right) .
\end{array}
$$

- Define

$$
\begin{array}{ccc}
f: H \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z} & \rightarrow & S \\
(h, a) & \mapsto & h \cdot s_{a} .
\end{array}
$$

- Now

$$
\begin{aligned}
f(h, a)=f\left(h^{\prime}, a^{\prime}\right) \Leftrightarrow a & =0, a^{\prime}=1, h^{\prime}=h \chi, \text { or } \\
a & =1, a^{\prime}=0, h=h^{\prime} \chi, \text { or } \\
a & =a^{\prime}=1, h=h^{\prime} .
\end{aligned}
$$

$\rightsquigarrow f$ hides the subgroup $\{(1,0),(\chi, 1)\} \subset H \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$.

- Finding subgroup hidden by f gives secret χ.

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: $2^{(\sqrt{2}+o(1))} \sqrt{\log _{2} n}$.

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: $2^{(\sqrt{2}+o(1))} \sqrt{\log _{2} n}$.

Main open questions on asymptotic complexity:

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: $2^{(\sqrt{2}+o(1))} \sqrt{\log _{2} n}$.

Main open questions on asymptotic complexity:

- Can the power of $\log _{2} n$ be reduced?

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: $2^{(\sqrt{2}+o(1))} \sqrt{\log _{2} n}$.

Main open questions on asymptotic complexity:

- Can the power of $\log _{2} n$ be reduced?
- If not, can the constant $\sqrt{2}$ be improved?

Quantum complexity analysis

- 2003: Kuperberg gives quantum algorithm for DHSP in $\mathbb{Z} / n \mathbb{Z} \rtimes_{\varphi} \mathbb{Z} / 2 \mathbb{Z}$ using
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ queries
- $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ ops on $\exp \left(\left(\log _{2} n\right)^{1 / 2+o(1)}\right)$ qubits.
- 2004: Regev gives variant with polynomial number of qubits and exponential time.
- 2011: Kuperberg gives more trade-offs and improvements. Best time using (only) subexponential number of qubits: $2^{(\sqrt{2}+o(1))} \sqrt{\log _{2} n}$.

Main open questions on asymptotic complexity:

- Can the power of $\log _{2} n$ be reduced?
- If not, can the constant $\sqrt{2}$ be improved?
- If not, what's the smallest o(1)?

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? $2^{96} ? 2^{128}$?

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? $2^{96} ? 2^{128}$?

Subquestions:

- Exactly how many queries needed?

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? 2^{96} ? 2^{128} ?

Subquestions:

- Exactly how many queries needed?
- How expensive is each CSIDH query?

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? $2^{96} ? 2^{128}$?

Subquestions:

- Exactly how many queries needed?
- How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? 2^{96} ? 2^{128} ?

Subquestions:

- Exactly how many queries needed?
- How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? 2^{96} ? 2^{128} ?

Subquestions:

- Exactly how many queries needed?
- How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete post-quantum security levels 2^{64} ? 2^{96} ? 2^{128} ?

Subquestions:

- Exactly how many queries needed?
- How expensive is each CSIDH query?
- How is attack affected by occasional errors and non-uniform distributions over the group?
- What about memory, using parallel AT metric? Are trade-offs worth it: (theoretically) fastest variant uses billions of qubits.

How expensive is each CSIDH query?

Secret key: path on the graph
Public key: end points of path
One query: computes many paths in superposition

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the isogeny graph

Edges: 3-, 5-, and 7-isogenies.

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

Edges: 3-isogenies.

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{2}{3}, 140 \cdot P$ has order 3

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{2}{3}, 140 \cdot P$ has order 3
- Using Vélu's formulas, find map with kernel $=\langle 140 \cdot P\rangle$

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 3-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{2}{3}, 140 \cdot P$ has order 3
- Using Vélu's formulas, find map with kernel $=\langle 140 \cdot P\rangle$
- Image of map is a neighbour

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 5-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{2}{3}, 140 \cdot P$ has order 3
- Using Vélu's formulas, find map with kernel $=\langle 140 \cdot P\rangle$
- Image of map is a neighbour

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 5-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{4}{5}, 84 \cdot P$ has order 5
- Using Vélu's formulas, find map with kernel $=\langle 84 \cdot P\rangle$
- Image of map is a neighbour

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 7-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{4}{5}, 84 \cdot P$ has order 5
- Using Vélu's formulas, find map with kernel $=\langle 84 \cdot P\rangle$
- Image of map is a neighbour

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the 7-isogeny graph

- Recall: $E_{51} / \mathbb{F}_{419}: y^{2}=x^{3}+51 x^{2}+x$.
- Choose a random \mathbb{F}_{419}-point $P=(x, y)$ on E_{51}
- P has order dividing 420.
- With probability $\frac{6}{7}, 60 \cdot P$ has order 7
- Using Vélu's formulas, find map with kernel $=\langle 60 \cdot P\rangle$
- Image of map is a neighbour

Computing isogenies

Aim: given curve E_{A}, find a neighbour in the ℓ-isogeny graph

- Recall: $E_{A} / \mathbb{F}_{p}: y^{2}=x^{3}+A x^{2}+x$
- Choose a random \mathbb{F}_{p}-point $P=(x, y)$ on E_{A}
- P has order dividing $p+1$.
- With probability $\frac{\ell-1}{\ell}, \frac{p+1}{\ell} \cdot P$ has order ℓ.*
- Using Vélu's formulas, find map with kernel $=\left\langle\frac{p+1}{\ell} \cdot P\right\rangle$
- Image of map is a neighbour
* assuming $\ell \mid(p+1)$.

Computing a query

- A query computes paths in superposition.

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive.

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive. Different degrees computed in superposition \rightsquigarrow bored qubits.

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive. Different degrees computed in superposition \rightsquigarrow bored qubits.
- Isogeny computation fails often for small ℓ.

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive. Different degrees computed in superposition \rightsquigarrow bored qubits.
- Isogeny computation fails often for small ℓ. \rightsquigarrow problematic for quantum implementation.

Computing a query

- A query computes paths in superposition.
- A path is a sequence of isogenies (of varying degrees).
- Larger degree isogenies are more expensive. Different degrees computed in superposition \rightsquigarrow bored qubits.
- Isogeny computation fails often for small ℓ. \rightsquigarrow problematic for quantum implementation.
[BLMP] Gives many optimizations / more complex variants-trying to mitigate these problems.

Computing a query

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

Computing a query

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

Computing a query

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:
\(\left.$$
\begin{array}{ccc}\text { sequence of } \\
\text { basic bit ops } \\
\text { with } \leq B & \text { sequence of } \\
\text { reversible ops } \\
\text { nonlinear ops } & \text { with } \leq 2 B & \text { Toffoli ops }\end{array}
$$ \begin{array}{c}sequence of

reversible ops\end{array}\right]\)| with $\leq 14 B$ |
| :---: |
| T-gates |

Computing a query

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

Why this generic conversion?
Unknown expense of extra $O(B)$ measurements in context of surface-code error correction

Computing a query

[BLMP] provides software to compute a path using basic bit operations: automatic tallies of nonlinear ops (AND, OR) and linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of				
basic bit ops				
with $\leq B$	sequence of			
reversible ops				
nonlinear ops	with $\leq 2 B$	Toffoli ops		sequence of
:---:				
reversible ops	\quad	with $\leq 14 B$		
:---:				
T-gates				

Why this generic conversion?
Unknown expense of extra $O(B)$ measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.
- For an error rate of $<2^{-32}$, our best algorithm requires

$$
765325228976 \approx 0.7 \cdot 2^{40}
$$

nonlinear bit operations. Previous record was 2^{51}.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.
- For an error rate of $<2^{-32}$, our best algorithm requires

$$
765325228976 \approx 0.7 \cdot 2^{40}
$$

nonlinear bit operations. Previous record was 2^{51}.

- Generic conversion gives $\approx 2^{43.3} \mathrm{~T}$-gates using 2^{40} qubits.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.
- For an error rate of $<2^{-32}$, our best algorithm requires

$$
765325228976 \approx 0.7 \cdot 2^{40}
$$

nonlinear bit operations. Previous record was 2^{51}.

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.
- For an error rate of $<2^{-32}$, our best algorithm requires

$$
765325228976 \approx 0.7 \cdot 2^{40}
$$

nonlinear bit operations. Previous record was 2^{51}.

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.

Case study: CSIDH-512

[CLMPR]: proposes CSIDH-512 for NIST level I

- Here the finite field is \mathbb{F}_{p} with

$$
p=4 \cdot \ell_{1} \cdots \ell_{74}-1
$$

where $\ell_{1}, \ldots, \ell_{74}$ are small distinct primes.

- Note that each ℓ_{i} divides $p+1$.
- For an error rate of $<2^{-32}$, our best algorithm requires

$$
765325228976 \approx 0.7 \cdot 2^{40}
$$

nonlinear bit operations. Previous record was 2^{51}.

- Generic conversion gives $\approx 2^{43.3}$ T-gates using 2^{40} qubits.
- Can do $\approx 2^{45.3}$ T-gates using $\approx 2^{20}$ qubits.
- Total gates for one query (T+Clifford): $\approx 2^{46.9}$.
- Number of queries: $\approx 2^{19.3}$ using $\approx 2^{32}$ bits of QRACM [P].

Oracle errors

- [BLMP] gives oracle costs for error rates $2^{-1}, 2^{-32}, 2^{-256}$.

Oracle errors

- [BLMP] gives oracle costs for error rates $2^{-1}, 2^{-32}, 2^{-256}$.
- Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.

Oracle errors

- [BLMP] gives oracle costs for error rates $2^{-1}, 2^{-32}, 2^{-256}$.
- Understanding the error tolerance of Kuperberg's algorithm is essential to obtain accurate concrete numbers.
- Advances in quantum error correction would also massively change the complexity.

Open questions: summary

- How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- Is there a quantum algorithm that does better than $\mathrm{L}(1 / 2)$?
- Should be difficult: this would also decrease the security of all lattice proposals.
- Can we decrease the cost of one query?

Open questions: summary

- How do oracle errors interact with Kuperberg's algorithm?
- What kind of overheads come from handling large numbers of qubits?
- Is there a quantum algorithm that does better than $\mathrm{L}(1 / 2)$?
- Should be difficult: this would also decrease the security of all lattice proposals.
- Can we decrease the cost of one query?

Thank you!

References

[BLMP] Bernstein, Lange, Martindale, and Panny,
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies, Eurocrypt 2019, quantum. isogeny.org.
[CLMPR] Castryck, Lange, Martindale, Panny, and Renes, CSIDH: An efficient post-quantum commutative group action, Asiacrypt 2018, csidh. isogeny.org.
[CJS] Childs, Jao, and Soukharev, Constructing elliptic curve isogenies in quantum subexponential time, J. Math. Crypto 2014, arxiv.org/abs/1012.4019.
[P] Peikert,
He gives C-sieves on the CSIDH, Eurocrypt 2020, ia.cr.org/2019/725.

Credits to my coauthors Daniel J. Bernstein, Tanja Lange, and Lorenz Panny for many of the contents of this presentation.

