
Quantum attacks on isogeny-based
cryptography

Chloe Martindale

University of Bristol

Based on joint work with
Daniel J. Bernstein, Tanja Lange, and Lorenz Panny

quantum.isogeny.org



["si:saId]

1 / 22



Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange

candidates
I Competitive speed: 50-60ms for a full key exchange

2 / 22



Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g·g
·g

·g

·g

·g

·g

·g

·g
·g

·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

4 / 22



Square-and-multiply

·g·g
·g

·g
·g
·g
·g
·g

·g ·g ·g ·g ·g
·g
·g
·g
·g
·g

·g
·g·g·g·g

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

·g2
·g2

·g2

·g2

·g2

·g2

·g2

·g2

·g2
·g2·g2·g2·g2·g

2
·g2
·g2
·g2
·g2

·g2
·g2·g2·g2·g2

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

·g4
·g4

·g4

·g4

·g4

·g4

·g4

·g4

·g4
·g4·g4·g4·g4·g

4
·g4
·g4
·g4
·g4

·g4
·g4·g4·g4·g4

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

·g8
·g8

·g8

·g8

·g8

·g8

·g8

·g8

·g8
·g8·g8·g8·g8·g

8
·g8
·g8
·g8
·g8

·g8
·g8·g8·g8·g8

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

5 / 22



Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

5 / 22



Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

5 / 22



Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

5 / 22



Union of cycles: rapid mixing
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

6 / 22



Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

6 / 22



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

7 / 22



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.

Edges: 3-, 5-, and 7-isogenies.

7 / 22



Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

7 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps

8 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).

I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps

8 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps

8 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps

8 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.

I Vélu’s formulas:
generators of kernel rational maps

8 / 22



Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps

8 / 22



Graphs of elliptic curves

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

9 / 22



Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H that acts by
isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.

10 / 22



Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H that acts by
isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.

10 / 22



Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H that acts by

isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.

10 / 22



Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H that acts by

isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.

10 / 22



Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H that acts by

isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.

10 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

11 / 22



Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

11 / 22



Quantum security: from CSIDH to DHSP

I Hard problem in CSIDH: given group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.

I [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ oϕ Z/2Z where

I ϕ : Z/2Z→ Aut(Z/nZ) a homomorphism, and
I

(Z/nZ oϕ Z/2Z)× (Z/nZ oϕ Z/2Z) → Z/nZ oϕ Z/2Z
(a1, b1), (a2, b2) 7→ (a1ϕ(b1)(a2), b1b2).

12 / 22



Quantum security: from CSIDH to DHSP

I Hard problem in CSIDH: given group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ oϕ Z/2Z where

I ϕ : Z/2Z→ Aut(Z/nZ) a homomorphism, and
I

(Z/nZ oϕ Z/2Z)× (Z/nZ oϕ Z/2Z) → Z/nZ oϕ Z/2Z
(a1, b1), (a2, b2) 7→ (a1ϕ(b1)(a2), b1b2).

12 / 22



Quantum security: from CSIDH to DHSP

I Hard problem in CSIDH: given group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ oϕ Z/2Z

where

I ϕ : Z/2Z→ Aut(Z/nZ) a homomorphism, and
I

(Z/nZ oϕ Z/2Z)× (Z/nZ oϕ Z/2Z) → Z/nZ oϕ Z/2Z
(a1, b1), (a2, b2) 7→ (a1ϕ(b1)(a2), b1b2).

12 / 22



Quantum security: from CSIDH to DHSP

I Hard problem in CSIDH: given group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ oϕ Z/2Z where

I ϕ : Z/2Z→ Aut(Z/nZ) a homomorphism, and
I

(Z/nZ oϕ Z/2Z)× (Z/nZ oϕ Z/2Z) → Z/nZ oϕ Z/2Z
(a1, b1), (a2, b2) 7→ (a1ϕ(b1)(a2), b1b2).

12 / 22



Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.

I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.
I Finding subgroup hidden by f gives secret χ.

13 / 22



Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.
I Finding subgroup hidden by f gives secret χ.

13 / 22



Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.
I Finding subgroup hidden by f gives secret χ.

13 / 22



Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.

I Finding subgroup hidden by f gives secret χ.

13 / 22



Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.
I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.
I Finding subgroup hidden by f gives secret χ.

13 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries

I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.
I 2004: Regev gives variant with polynomial number of

qubits and exponential time.
I 2011: Kuperberg gives more trade-offs and improvements.

Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:

I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?

I If not, can the constant
√

2 be improved?
I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?

14 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?

I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?

I How is attack affected by occasional errors
and non-uniform distributions over the group?

I What about memory, using parallel AT metric?
Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?

I What about memory, using parallel AT metric?
Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.

15 / 22



How expensive is each CSIDH query?

Secret key: path on the graph
Public key: end points of path
One query: computes many paths in superposition

16 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the isogeny graph

E51

Edges: 3-, 5-, and 7-isogenies.

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

Edges: 3-isogenies.

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.

I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability
I Using Vélu’s formulas, find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability
I Using Vélu’s formulas, find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.

I With probability
I Using Vélu’s formulas, find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3

I Using Vélu’s formulas, find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3
I Using Vélu’s formulas, find map with kernel = 〈140 · P〉

I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3
I Using Vélu’s formulas, find map with kernel = 〈140 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 5-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3
I Using Vélu’s formulas, find map with kernel = 〈140 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 5-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Using Vélu’s formulas, find map with kernel = 〈84 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Using Vélu’s formulas, find map with kernel = 〈84 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 6

7 , 60 · P has order 7
I Using Vélu’s formulas, find map with kernel = 〈60 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).

17 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the `-isogeny graph

E51

I Recall: EA/Fp : y2 = x3 + Ax2 + x
I Choose a random Fp-point P = (x, y) on EA

I P has order dividing p + 1.
I With probability `−1

` , p+1
` · P has order `.∗

I Using Vélu’s formulas, find map with kernel = 〈p+1
` · P〉

I Image of map is a neighbour

∗ assuming `|(p + 1).
17 / 22



Computing a query

I A query computes paths in superposition.

I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).

I Larger degree isogenies are more expensive.
Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.

 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query

I A query computes paths in superposition.
I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.

18 / 22



Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

19 / 22



Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

19 / 22



Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

19 / 22



Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

19 / 22



Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?

19 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.

I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.

I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.

I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.

I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.

I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.

I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].

20 / 22



Oracle errors

I [BLMP] gives oracle costs for error rates 2−1, 2−32, 2−256.

I Understanding the error tolerance of Kuperberg’s
algorithm is essential to obtain accurate concrete numbers.

I Advances in quantum error correction would also
massively change the complexity.

21 / 22



Oracle errors

I [BLMP] gives oracle costs for error rates 2−1, 2−32, 2−256.
I Understanding the error tolerance of Kuperberg’s

algorithm is essential to obtain accurate concrete numbers.

I Advances in quantum error correction would also
massively change the complexity.

21 / 22



Oracle errors

I [BLMP] gives oracle costs for error rates 2−1, 2−32, 2−256.
I Understanding the error tolerance of Kuperberg’s

algorithm is essential to obtain accurate concrete numbers.
I Advances in quantum error correction would also

massively change the complexity.

21 / 22



Open questions: summary

I How do oracle errors interact with Kuperberg’s algorithm?
I What kind of overheads come from handling large

numbers of qubits?
I Is there a quantum algorithm that does better than L(1/2)?

I Should be difficult: this would also decrease the security of
all lattice proposals.

I Can we decrease the cost of one query?

Thank you!

22 / 22



Open questions: summary

I How do oracle errors interact with Kuperberg’s algorithm?
I What kind of overheads come from handling large

numbers of qubits?
I Is there a quantum algorithm that does better than L(1/2)?

I Should be difficult: this would also decrease the security of
all lattice proposals.

I Can we decrease the cost of one query?

Thank you!

22 / 22



References

[BLMP] Bernstein, Lange, Martindale, and Panny,
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies,
Eurocrypt 2019, quantum.isogeny.org.

[CLMPR] Castryck, Lange, Martindale, Panny, and Renes,
CSIDH: An efficient post-quantum commutative group action,
Asiacrypt 2018, csidh.isogeny.org.

[CJS] Childs, Jao, and Soukharev,
Constructing elliptic curve isogenies in quantum subexponential time,
J. Math. Crypto 2014, arxiv.org/abs/1012.4019.

[P] Peikert,
He gives C-sieves on the CSIDH,
Eurocrypt 2020, ia.cr.org/2019/725.

Credits to my coauthors Daniel J. Bernstein, Tanja Lange, and
Lorenz Panny for many of the contents of this presentation.

22 / 22

quantum.isogeny.org
csidh.isogeny.org
arxiv.org/abs/1012.4019
ia.cr.org/2019/725

