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Why CSIDH?

I Drop-in post-quantum replacement for (EC)DH
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange

candidates
I Competitive speed: 50-60ms for a full key exchange

2 / 22



Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

3 / 22



Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Graphs of elliptic curves

I EA/Fp : y2 = x3 + Ax2 + x with A ∈ Fp −{±2} are examples
of elliptic curves.

I The set of Fp-rational points of EA form a group EA(Fp).
I If #EA(Fp) = p + 1 then EA is supersingular.

I A rational map EA → EB is an isogeny if it preserves the
group structure and is surjective.

I Isogenies have finite kernel.
I Vélu’s formulas:

generators of kernel rational maps
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Graphs of elliptic curves

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H that acts by
isogenies.∗

I The action of a well-chosen h ∈ H on S moves the elliptic
curves one step around one of the cycles.

∗Die-hards: H = cl(EndFp (E)) = cl(Z[
√−p]); an ideal class [I] ∈ H defines the kernel.
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Diffie-Hellman on ‘nice’ graphs

Alice Bob
[+,−,+,−] [+,+,−,+]
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Quantum security: from CSIDH to DHSP

I Hard problem in CSIDH: given group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.

I [CJS]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ oϕ Z/2Z where

I ϕ : Z/2Z→ Aut(Z/nZ) a homomorphism, and
I

(Z/nZ oϕ Z/2Z)× (Z/nZ oϕ Z/2Z) → Z/nZ oϕ Z/2Z
(a1, b1), (a2, b2) 7→ (a1ϕ(b1)(a2), b1b2).
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Quantum security: from CSIDH to DHSP
I CSIDH: given cyclic H and group action

H × S→ S

and s0, s1 ∈ S, find χ ∈ H such that χ · s0 = s1.

I Define ϕ : Z/2Z → Aut(H)

a 7→ (h 7→ h(−1)a
).

I Define f : H oϕ Z/2Z → S
(h, a) 7→ h · sa.

I Now
f (h, a) = f (h′, a′)⇔ a = 0, a′ = 1, h′ = hχ, or

a = 1, a′ = 0, h = h′χ, or
a = a′ = 1, h = h′.

 f hides the subgroup {(1, 0), (χ, 1)} ⊂ H oϕ Z/2Z.
I Finding subgroup hidden by f gives secret χ.
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Quantum complexity analysis

I 2003: Kuperberg gives quantum algorithm for DHSP in
Z/nZ oϕ Z/2Z using

I exp((log2 n)1/2+o(1)) queries
I exp((log2 n)1/2+o(1)) ops on exp((log2 n)1/2+o(1)) qubits.

I 2004: Regev gives variant with polynomial number of
qubits and exponential time.

I 2011: Kuperberg gives more trade-offs and improvements.
Best time using (only) subexponential number of qubits:
2(
√

2+o(1))
√

log2 n.

Main open questions on asymptotic complexity:
I Can the power of log2 n be reduced?
I If not, can the constant

√
2 be improved?

I If not, what’s the smallest o(1)?
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Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 296? 2128?

Subquestions:
I Exactly how many queries needed?
I How expensive is each CSIDH query?
I How is attack affected by occasional errors

and non-uniform distributions over the group?
I What about memory, using parallel AT metric?

Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.
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How expensive is each CSIDH query?

Secret key: path on the graph
Public key: end points of path
One query: computes many paths in superposition

16 / 22



Computing isogenies

Aim: given curve EA, find a neighbour in the isogeny graph

E51

Edges: 3-, 5-, and 7-isogenies.
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Aim: given curve EA, find a neighbour in the 3-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.

I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability
I Using Vélu’s formulas, find map with kernel =
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the 5-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 2

3 , 140 · P has order 3
I Using Vélu’s formulas, find map with kernel = 〈140 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the 5-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Using Vélu’s formulas, find map with kernel = 〈84 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 4

5 , 84 · P has order 5
I Using Vélu’s formulas, find map with kernel = 〈84 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the 7-isogeny graph

E51

I Recall: E51/F419 : y2 = x3 + 51x2 + x.
I Choose a random F419-point P = (x, y) on E51

I P has order dividing 420.
I With probability 6

7 , 60 · P has order 7
I Using Vélu’s formulas, find map with kernel = 〈60 · P〉
I Image of map is a neighbour

∗ assuming `|(p + 1).
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Computing isogenies

Aim: given curve EA, find a neighbour in the `-isogeny graph

E51

I Recall: EA/Fp : y2 = x3 + Ax2 + x
I Choose a random Fp-point P = (x, y) on EA

I P has order dividing p + 1.
I With probability `−1

` , p+1
` · P has order `.∗

I Using Vélu’s formulas, find map with kernel = 〈p+1
` · P〉

I Image of map is a neighbour

∗ assuming `|(p + 1).
17 / 22



Computing a query

I A query computes paths in superposition.

I A path is a sequence of isogenies (of varying degrees).
I Larger degree isogenies are more expensive.

Different degrees computed in superposition
 bored qubits.

I Isogeny computation fails often for small `.
 problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants–trying to mitigate these problems.
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Computing a query
[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of
basic bit ops

with ≤ B
nonlinear ops

 

sequence of
reversible ops

with ≤ 2B
Toffoli ops

 

sequence of
reversible ops
with ≤ 14B

T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?
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Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

I Here the finite field is Fp with

p = 4 · `1 · · · `74 − 1,

where `1, . . . , `74 are small distinct primes.
I Note that each `i divides p + 1.
I For an error rate of < 2−32, our best algorithm requires

765325228976 ≈ 0.7 · 240

nonlinear bit operations. Previous record was 251.
I Generic conversion gives ≈ 243.3 T-gates using 240 qubits.
I Can do ≈ 245.3 T-gates using ≈ 220 qubits.
I Total gates for one query (T+Clifford): ≈ 246.9.
I Number of queries: ≈ 219.3 using ≈ 232 bits of QRACM [P].
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Oracle errors

I [BLMP] gives oracle costs for error rates 2−1, 2−32, 2−256.

I Understanding the error tolerance of Kuperberg’s
algorithm is essential to obtain accurate concrete numbers.

I Advances in quantum error correction would also
massively change the complexity.
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Open questions: summary

I How do oracle errors interact with Kuperberg’s algorithm?
I What kind of overheads come from handling large

numbers of qubits?
I Is there a quantum algorithm that does better than L(1/2)?

I Should be difficult: this would also decrease the security of
all lattice proposals.

I Can we decrease the cost of one query?

Thank you!
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