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Why CSIDH?

v

Drop-in post-quantum replacement for (EC)DH

v

Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

v

Smallest keys of all post-quantum key exchange
candidates

v

Competitive speed: 50-60ms for a full key exchange
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Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

ZxG —= G
(x,8) — g~
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Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.
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Square-and-multiply
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Square-and-multiply

1 g0 2

Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing
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’ CSIDH: Nodes are now elliptic curves and edges are isogenies. ‘
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Graphs of elliptic curves
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Graphs of elliptic curves

Nodes: Supersingular elliptic curves E4: y* = x° + Ax* + x over Fajo.
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Graphs of elliptic curves
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Nodes: Supersingular elliptic curves E4: y* = x° + Ax* + x over Fajo.
Edges: 3-, 5-, and 7-isogenies.
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Graphs of elliptic curves

> Eq/F,: y* = x>+ Ax® + x with A € F, — {£2} are examples
of elliptic curves.
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Graphs of elliptic curves

> Eq/F,: y* = x>+ Ax® + x with A € F, — {£2} are examples
of elliptic curves.

» The set of IF,-rational points of E4 form a group E4(Fy).
» If #E4(F,) = p + 1 then E, is supersingular.

» A rational map E4 — Ep is an isogeny if it preserves the
group structure and is surjective.
» Isogenies have finite kernel.
» Vélu's formulas:
generators of kernel ~~ rational maps
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Graphs of elliptic curves

A 3-isogeny
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Quantumifying Exponentiation
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Quantumifying Exponentiation

» We want to replace the exponentiation map

ZxG — G
(x,8) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Exc: ]/2 =x3 +Ax2 + x over Fyq9.

» Replace Z by a commutative group H that acts by
isogenies.*

» The action of a well-chosen i € H on S moves the elliptic
curves one step around one of the cycles.

*Die-hards: H = cl(Endg, (E)) = cl(Z[y/—p]); an ideal class [I] € H defines the kernel.
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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Quantum security: from CSIDH to DHSP

» Hard problem in CSIDH: given group action
HxS—S
and sg,s1 € S, find x € H such that x - sp = s1.
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Quantum security: from CSIDH to DHSP

» Hard problem in CSIDH: given group action
HxS—S

and sg,s1 € S, find x € H such that x - sp = s1.
» [C]S]: this is a dihedral hidden subgroup problem (DHSP).

Recall the dihedral group: Z/nZ %, Z/27 where
> ¢ :7/27 — Aut(Z/nZ) a homomorphism, and

>

(Z/nZ xp ZJ27) % (Z/nZ %, ZJ27) —  ZL/nZ Xy, 7/27
(a1,b1), (a2, b2) = (a1p(b1)(a2), bibs).
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and sg,s1 € S, find x € H such that x - sp = s7.
» Define v: 7222 — Aut(H)

a o~ (bKD",

» Define f: Hx,Z/2Z — S
(h,a) = h-s,.

f(hya)=f(W,d')=a=0,a =11 =hy, or
a=1,a =0 h=Hy, or
a=d=1h="H.

~~ f hides the subgroup {(1,0), (x,1)} C H %, Z/2Z.
» Finding subgroup hidden by f gives secret .
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Best time using (only) subexponential number of qubits:

2(\@4‘0(1))\/ logy 1.

Main open questions on asymptotic complexity:
» Can the power of log, 1 be reduced?
» If not, can the constant v/2 be improved?
» If not, what’s the smallest o(1)?
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post-quantum security levels 2647 2962 21282
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Concrete quantum complexity analysis

What CSIDH key sizes are needed for concrete
post-quantum security levels 264? 2962 21287
Subquestions:

» Exactly how many queries needed?

» How expensive is each CSIDH query?

» How is attack affected by occasional errors
and non-uniform distributions over the group?

» What about memory, using parallel AT metric?
Are trade-offs worth it: (theoretically) fastest variant uses
billions of qubits.
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How expensive is each CSIDH query?

One query: computes many paths in superposition

Secret key: path on the graph
Public key: end points of path

16 /22



Computing isogenies

’ Aim: given curve E,, find a neighbour in the isogeny graph

Edges: 3-, 5-, and 7-isogenies.
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Computing isogenies
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Computing isogenies

’ Aim: given curve E 4, find a neighbour in the 7-isogeny graph

Recall: Es1/Fy19 : y* = x° + 51x2 + x.
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P has order dividing 420.
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Computing isogenies

’ Aim: given curve E 4, find a neighbour in the 7-isogeny graph

Recall: Es1/Fy19 : y* = x° + 51x2 + x.

Choose a random Fy9-point P = (x,y) on E5

P has order dividing 420.

With probability §, 60 - P has order 7

Using Vélu's formulas, find map with kernel = (60 - P)

vV Vv v v Y
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Computing isogenies

’ Aim: given curve E4, find a neighbour in the /-isogeny graph

v

Recall: E4/F) : y* = x® + Ax?> 4+ x
Choose a random F,-point P = (x,y) on E4

v

v

P has order dividing p + 1.
With probability 171, £~ H - P has order £.*

Using Vélu’s formulas, fmd map with kernel = <# - P)

v

v

v

Image of map is a neighbour

* assuming ¢|(p + 1).
17/22
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Computing a query

» A query computes paths in superposition.
» A path is a sequence of isogenies (of varying degrees).

» Larger degree isogenies are more expensive.
Different degrees computed in superposition
~+ bored qubits.

» Isogeny computation fails often for small /.
~+ problematic for quantum implementation.

[BLMP] Gives many optimizations / more complex
variants—-trying to mitigate these problems.
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Computing a query

[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).
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[BLMP] provides software to compute a path using basic bit
operations: automatic tallies of nonlinear ops (AND, OR) and
linear ops (XOR, NOT).

We then apply a generic conversion:

sequence of sequence of sequence of
basic bit ops reversible ops reversible ops
> >
with < B with < 2B with < 14B
nonlinear ops Toffoli ops T-gates

Why this generic conversion?
Unknown expense of extra O(B) measurements in context of surface-code error correction

Open question:
How much faster than the generic conversion is possible?
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Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I
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» For an error rate of < 2732, our best algorithm requires
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» Here the finite field is [ with

where /1, ..., {74 are small distinct primes.
» Note that each ¢; divides p + 1.

» For an error rate of < 2732, our best algorithm requires
765325228976 ~ 0.7 - 2%

nonlinear bit operations. Previous record was 2°!.

» Generic conversion gives ~ 243.3 T-gates using 240 qubits.
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where /1, ..., {74 are small distinct primes.
» Note that each ¢; divides p + 1.

» For an error rate of < 2732, our best algorithm requires
765325228976 ~ 0.7 - 2%

nonlinear bit operations. Previous record was 2°!.
» Generic conversion gives ~ 2433 T-gates using 2%’ qubits.
» Can do = 23 T-gates using ~ 220 qubits.
» Total gates for one query (T+Clifford): ~ 246

20/22



Case study: CSIDH-512
[CLMPR]: proposes CSIDH-512 for NIST level I

>

vV v.vvY

Here the finite field is [ with

where /1, ..., {74 are small distinct primes.
Note that each ¢; divides p + 1.

For an error rate of < 2732, our best algorithm requires
765325228976 ~ 0.7 - 2%

nonlinear bit operations. Previous record was 2°!.

Generic conversion gives ~ 2433 T-gates using 2*° qubits.
Can do ~ 2%-3 T-gates using ~ 2% qubits.

Total gates for one query (T+Clifford): ~ 2469,

Number of queries: ~ 2193 using ~ 232 bits of QRACM [P].
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Oracle errors

» [BLMP] gives oracle costs for error rates 2-1 2732 2-2%
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Oracle errors

» [BLMP] gives oracle costs for error rates 2-1 2732 2-2%

» Understanding the error tolerance of Kuperberg’s
algorithm is essential to obtain accurate concrete numbers.

» Advances in quantum error correction would also
massively change the complexity.
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Open questions: summary

v

How do oracle errors interact with Kuperberg’s algorithm?

v

What kind of overheads come from handling large
numbers of qubits?
Is there a quantum algorithm that does better than L(1/2)?

» Should be difficult: this would also decrease the security of
all lattice proposals.

v

v

Can we decrease the cost of one query?
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Open questions: summary

v

How do oracle errors interact with Kuperberg’s algorithm?

v

What kind of overheads come from handling large
numbers of qubits?
Is there a quantum algorithm that does better than L(1/2)?

» Should be difficult: this would also decrease the security of
all lattice proposals.

v

v

Can we decrease the cost of one query?

Thank you!
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