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These notes are from a talk given in the Number Theory Seminar at INRIA,
Nancy, France. The contents of the talk include research from the PhD thesis
of the author, which was written under the supervision of Dr Marco Streng,
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UCLA, as joint work together with Sean Ballentine, Aurore Guillevic, Elisa
Lorenzo-Garcia, Maike Massierer, Ben Smith, and Jaap Top.

1 Motivation: elliptic curves

In curve-based cryptography, it is important to develop fast algorithms for com-
puting isogenies between curves, for computing endomorphism rings, and for
counting points on curves defined over finite fields Fp, where p is a very large
prime. All of this research was inspired by previous research into elliptic curves,
and so we first recall definitions and results for elliptic curves as a motivation
for the higher genus case.

Definition. Suppose that E and E′ are elliptic curves over a field k. An isogeny
φ : E → E′ is a surjective morphism with finite kernel that sends the identity
to the identity.

Remark. Some people consider the constant-zero morphism to be an isogeny,
which is not consistent with the above definition. As this morphism will not
play a role in our work, we do not include the constant-zero morphism in our
definition of isogeny.

Definition. Suppose that φ : E → E′ is an isogeny of elliptic curves over a
field k. This induces an injective morphism of function fields

k(E′) −→ k(E).

We define the degree of φ to be

deg(φ) = [k(E) : k(E′)].

Question 1. A natural question to ask now is, when are 2 curves isogenous?
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As motivation to answer this question, consider the following: if we can
break the discrete logarithm problem on an elliptic E′ and efficiently compute
an isogeny E′ → E, then we can break the discrete logarithm problem on E.
We answer this question by looking at isogeny graphs.

Definition. An `-isogeny graph of elliptic curves as an undirected graph for
which each vertex represents a j-invariant (this is an isomorphism invariant) of
an elliptic curve over a field k, and an edge between j(E) and j(E′) represents
an `-isogeny E → E′ defined over k and its dual isogeny E′ → E.

Definition. An `-volcano is an undirected connected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

1. The subgraph on level V0 is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1, and
this accounts for every edge not on the surface.

3. For i < d, each vertex in Vi has degree `+ 1.

Example. Here is a 2-volcano with d = 2:

Theorem (Kohel ’96). Let E/Fq be an ordinary elliptic curve with j(E) 6=
0, 1728. Then the connected component of the `-isogeny graph containing j(E)
is a `-volcano.

Remark. The depth is given by max{r ∈ Z : `r|[OK : Z[π]]}, where π is the
q-power Frobenius endomorphism of E and K = Q(π). So the depth is as easy
to compute as the Frobenius endomorphism. (We’ll come back to this later).
The length of the cycle and the number of connected components are also easy
to compute.

Now with a simple path walking algorithm we can determine if j(E) and
j(E′) are in the same connected component of the isogeny graph, hence deter-
mine if they are isogenous, and if they are, determine the degree of the isogeny
(or at least of one of the isogenies).

Question 2. A natural question to ask at this point is: given an elliptic curve
over a field k, and an integer `, can we enumerate all the elliptic curves E′

over k such that there exists an isogeny E → E′ of degree `? That is, can we
compute the neighbours in the isogeny graph?
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We answer this question using modular polynomials.

Definition. For each ` ∈ Z≥2, the modular polynomial of level ` is a non-
constant-zero polynomial

Φ`(X,Y ) ∈ C[X,Y ]

such that, given any 2 elliptic curves E and E′ over C, there exists an isogeny
E → E′ of degree ` if and only if Φ`(j(E), j(E′)) = 0.

Remark. If ` ∈ Z≥2 is prime, then the degree of Φ`(X,Y ) in both X and Y is
given by `+ 1.

Remark. In fact the coefficients of Φ`(X,Y ) are integers, not just complex
numbers. This allows us to reduce the coefficients modulo a prime p, so that
furthermore, given any elliptic curves E and E′ over Fp, there exists an isogeny
E → E′ of degree ` if and only if Φ`(j(E), j(E′)) ≡ 0 mod p.

For small `, equations for Φ`(X,Y ) can be found for example at LMFDB.
These equations can also be thought of as models for the modular curve X0(`)
of level `.

We can now answer Question 2: given an elliptic curve E/Fp, compute
j(E) ∈ Fp, and compute the Fp-vauled polynomial in Φ`(j(E), Y ) mod p in Y .
The roots of this polynomials then give us the j-invariants of each curve E′/Fp
for which there exists an isogeny E → E′ of degree `.

Recall that the depth of the isogeny volcano was computed using the q-power
Frobenius; this works because isogenous curves over Fq have the same Frobenius
polynomial. Furthermore, if t is the trace of Frobenius of E/Fq, then

#E(Fq) = 1 + q − t.

Therefore, if two elliptic curves over Fq do not have the same number of Fq-
rational points then they are not isogenous.

Question 3. A natural question at this point is, given E/Fp, what is the most
efficient way of counting #E(Fp) for a large prime p?

We answer this with the beautiful theorem of Schoof, Elkies, and Atkin,
together with the bound |t| < 2

√
p, which gives us a polynomial time algorithm

for computing t, and hence #E(Fp).

Theorem (Schoof, Atkin, Elkies). Let E be an ordinary elliptic curve over Fp
such that j(E) 6= 0, 1728, and write the modular polynomial of level `

Φ`(j(E), Y ) = f1(Y ) · · · fn(Y )

as the product of irreducible polynomials in Fp[Y ]. Then (up to ordering) the
polynomials fi satisfy one of the following:

1. n = 2, deg(f1) = 1, and deg(f2) = `.
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2. deg(f1) = deg(f2) = 1, and for every i > 2, deg(fi) = r > 1, for some
r ∈ Z.

3. for every i, deg(fi) = r, for some r ∈ Z.

Furthermore, there exists a primitive rth root of unity ζ ∈ F` such that

t2 ≡ (ζ + ζ−1)2p mod `,

where in case (1) we set ζ = 1.

We unfortunately do not have time to prove this theorem, although the proof
is beautiful and elementary. Schoof has written a report on this theorem, which
is referenced as [Sch].

We can now answer Question 3 in the following way: given an elliptic curve
E over Fp, we first compute t2 modulo ` for many different primes ` (perhaps
up to a root of unity). We then use the bound on |t| and the Chinese Remainder
Theorem to compute t2. Lastly, we check the sign of t, for example by multi-
plying a non-trivial point P ∈ E(Fp) by both 1+p− t and 1+p+ t. For large p,
this is much more efficient than any other known algorithm for counting points.

2 Abelian varieties and isomorphism invariants

We are able to define a discrete logarithm on elliptic curves, classify isogenies
of elliptic curves using isogeny graphs, and give polynomial time point counting
algorithms on elliptic curves largely due to one property: that there exists a
group law. Recall that an elliptic curve (for odd characteristic) is defined by a
polynomial

y2 = f(x),

where deg(f) = 3. One could ask, what happens if deg(f) > 3? Or what about
other algebraic curves? One of the reasons that we so often stick to such a
special class of algebraic curves is because of the simple group law. But all is
not lost for other algebraic curves: although there is no known group law on the
curves themselves, to each algebraic curve C we can associate an abelian variety
(on which there exists a group law), called the Jacobian of C, written J(C), or
Jac(C). In fact, we can do even better, we can assume that the Jacobian is a
principally polarised abelian variety - which for all purposes of this talk means
‘nice’. Furthermore, if C is defined over k, then

C(k) ⊆ Jac(C)(k),

so we can study the k-rational points of C by studying the points on the Jaco-
bian, where we have a group law to help us. To generalise what we have seen in
this talk for elliptic curves to all algebraic curves, we must answer 4 questions:

Question 4. (a) How do we associate an isomorphism invariant to a princi-
pally polarised abelian variety (e.g. the Jacobian of an algebraic curve)?
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(b) What form do isogeny graphs of principally polarised abelian varieties
take?

(c) How do we define a modular polynomial, and can we compute it?

(d) How will these modular polynomials factor, and does the method of Schoof,
Elkies, and Atkin generalise in a natural way?

Just as for elliptic curves, we restrict now to the case of ordinary principally
polarised abelian varieties: that is, if A/Fq is a principally polarised abelian
variety, we assume that there exist non trivial Fq-rational Fq-torsion points on
A. This is because the results in the non-ordinary case are fundamentally differ-
ent, although certainly interesting in their own right, and so saved for another
research project.
In defining isogeny graphs, and especially modular polynomials, of elliptic curves,
the j-invariant (isomorphism invariant) of an elliptic curve played a crucial role,
so we first attempt to answer (a). For experts: we first note that if we restrict
to genus 2 curves (so to dimension 2), then one might think that the natural
choice would be Igusa invariants. However, (b), (c), and (d) look a lot more
complicated with this choice, so we use the extra structure given to us by the
fact that we are only interested in the problems over finite fields.

Recall: for any abelian variety A over a field Fq, we have endomorphisms on
A given by

A −→ A
P 7→ nP

for every n ∈ Z, as well as the Frobenius

π : A −→ A
P 7→ P q.

In particular, we have that Z[π] ⊆ End(A). Futhermore, A is simple and ordi-
nary, then the q-power Frobenius π generates a CM-field K = Q(π), and End(A)
is an order in K. Recall below the definition of a CM-field:

Definition. A CM-field K is a totally imaginary degree 2 extension of a totally
real number field K0. For End(A) an order in K, we say that A has real
multiplication by K0

Our isomorphism invariant for principally polarised ordinary abelian vari-
eties is a tuple of functions (j1, . . . , jd) with d < g + 1 depending K0.

These are still relatively nice for principally polarised ordinary abelian va-
rieties of dimension 2 (dimension 1 is the case of elliptic curves), where for
characteristic 6= 2 every such abelian variety over k is the Jacobian of a curve
of the form

y2 = f(x),
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where f(x) ∈ k[x] has degree 5 or 6; these curves are called genus 2 curves. For
a genus 2 curve C : y2 = f(x) ∈ Fp[x] with real multiplication by K0, we can
define rational functions

j1, j2, j3 : Fp[x]|deg=5,6 −→ A3
Fp

such that the tuple
(j1(f), j2(f), j3(f))

determines J (C) up to (real-multiplication preserving) isomorphism. The only
fields K0 for which these functions are explicitly written down are K0 = Q(

√
5)

and K0 = Q(
√

8), in work by Müller. The equations for j1 and j2 are known for
all real quadratic fields, thanks to work by Lauter and Yang, but the problem of
finding a general equation for j3 is still open. The existence of functions defining
isomorphism invariants (in arbitrary dimension) is proven in the thesis of the
author (and perhaps has been done elsewhere, unknown to her).

3 Isogeny graphs of abelian varieties

We now want to look at isogenies for higher genus curves, which we do by
studying isogenies of principally polarised ordinary abelian varieties (p.p.o.a.vs).
The following definition is the same as the one for elliptic curves:

Definition. A morphism of abelian varieties is an isogeny if it preserves the
identity, is surjective, and has finite kernel.

The generalisation of an `-isogeny to higher dimension that we use is quite
complicated, so we do not give the details here. The interested reader can find
the definition in the upcoming thesis of the author [Mar]. We again associate
a prime to the isogeny, but now a prime ideal in OK0

- we study ‘µ-isogenies’,
where µ is a totally positive element of OK0

which generates a prime ideal in
K0.

Definition. A µ-isogeny graph of p.p.o.a.vs is an undirected graph for which
each vertex represents a (j1, . . . , jd)-invariant of a p.p.o.a.v. over a field Fq,
and an edge between (j1, . . . , jd)(A) and (j1, . . . , jd)(A

′) represents a µ-isogeny
A→ A′ defined over Fq together with its dual isogeny (A′)∨ → A∨. (Note that
(j1, . . . , jd)(A) = (j1, . . . , jd)(A

∨) and (j1, . . . , jd)(A
′) = (j1, . . . , jd)((A

′)∨).)

Let I be the graph with one vertex and no edges, let R1 be a 1-cycle with
one edge of weight 1

2 , let R2 be 2 vertices joined by a single edge, and let Cn be
a cycle of length n.

Theorem (M. ’17). Let A/Fq be a principally polarised ordinary abelian variety
and suppose that the only roots of unity in End(A) ⊗ Q are ±1. Then the
connected component of the µ-isogeny graph containing A is a NormK0/Q(µ)-
volcano with V0 ∈ {I,R1, R2, Cn}.
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Remark. We have formulae for Γ and d given A, and just like the dimension
1 case, the depth d is easy compute using the Frobenius, and is 0 for all but
finitely many µ (up to multiplication by units).

Remark. A similar theorem (but not with µ-isogenies) was given for the genus
2 case by Ionica and Thomé in [IT]. Independently, Brooks, Jetchev, and
Wesolowski proved a similar statement (in arbitrary dimension) in [BJW].

4 Modular polynomials for genus 2 curves over
finite fields

Having answered Question 4(b), we want to know how to compute paths in our
isogeny graphs, i.e., we turn to Question 4(c): defining and computing modular
polynomials in dimension g. We can currently only implement an algorithm
to compute modular polynomials in dimension 2 (i.e. for Jacobians of genus
2 curves), so for simplicity we will work now with g = 2. We will use the
isomorphism invariants of the previous section, and so we fix the prime p, the
real quadratic number field K0, and an isomorphism invariant (j1, j2, j3) for K0

throughout. In the elliptic curve case, the modular polynomial of level ` told us
about isogenies of degree `, otherwise known as `-isogenies. The generalisation
of the modular polynomial tells us about µ-isogenies, where µ is a totally positive
element K0 that generates a prime ideal. It is given by the following theorem,
which is proven in the upcoming thesis of the author.

Theorem. There exists an algorithm to compute polynomials

Gµ(X1, X2, X3, Z1) ∈ Z[X1, X2, X3, Z1]
Hµ,2(X1, X2, X3, Z1, Z2) ∈ Z[X1, X2, X3, Z1, Z2]
Hµ,3(X1, X2, X3, Z1, Z3) ∈ Z[X1, X2, X3, Z1, Z3]

with

degZ1
(Gµ) = NormK0/Q(µ) + 1, degZ2

(Hµ,2) = 1, degZ3
(Hµ,3) = 1,

such that for ‘most’ genus 2 curves C/C with C : y2 = f(x), and C ′/C with
y2 = f(x)′, there exists a µ-isogeny J (C)→ J (C ′) if and only if

Gµ(j1(f), j2(f), j3(f), j1(f ′)) = 0
Hµ,2(j1(f), j2(f), j3(f), j1(f ′), j2(f ′)) = 0
Hµ,3(J1(f), j2(f), j3(f), j1(f ′), j3(f ′)) = 0.

For the precise definition of ‘most’, see the upcoming thesis of the author.
As in the genus 1 case, we can reduce these polynomials mod p to detect when
2 curves over Fp are µ-isogeneous. The algorithm has been implemented in the
cases for which j1, j2 and j3 are known, and the polynomials are computed up
to NormK0/Q(µ) = 19. Currently the author is working with Marius Vuille on
a new algorithm with which we hope to compute modular polynomials up to
at least norm 200. As more polynomials are computed, they can be found at
www.martindale.info.
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Remark. Enea Milio has a similar theorem on computing modular polynomials
in genus 2 (not with µ-isogenies) in [Mil]. The theoretical complexity of Milio’s
algorithm is also similar, although through superior implementation skills he
has managed to compute modular polynomials up to norm 97.

So, given a genus 2 curve C/Fp, we can enumerate all the (invariants of)
genus 2 curves C ′/Fp for which there exists a µ-isogeny to J (C) → J (C ′) in
the same way as we did for elliptic curves. That is, given C/Fp : y2 = f(x), we
can

1. Compute j1(f), j2(f), j3(f).

2. Enumerate the solutions of Gµ(j1(f), j2(f), j3(f), Z1) = 0, which gives us
j1(f ′) for every C ′ : y2 = f(x)′ for which J (C ′) is µ-isogenous to J (C).

3. For each C ′, find the unique j2(f ′) and j3(f ′) that satisfy

Hµ,2(j1(f), j2(f), j3(f), j1(f ′), j2(f ′)) = 0

and
Hµ,3(J1(f), j2(f), j3(f), j1(f ′), j3(f ′)) = 0.

If one requires the equation of the curve, in the thesis of the author there are
formulae to find the Igusa invariants in terms of j1, j2 and j3 (for K0 = Q(

√
5)),

and we can then use Mestre’s algorithm to find the curve. We now answer the
remaining part of Question 4, part (d).

5 Schoof’s algorithm in genus 2

This section is joint work with Ballentine, Guillevic, Lorenzo-Garcia, Massierer,
Smith, and Top. As before, we fix p, K0, j1, j2, and j3. We again need to
recall how the number of Fp-points on a genus 2 curves relates to the Frobenius
polynomial:
Let C be a genus 2 curve over Fp; then there exist integers s and t such that
the characteristic polynomial of the p-power Frobenius on J (C) is given by

X4 − tX3 + (2p+ s)X2 − tpX + p2.

Then in particular, we have the following facts:

1. #C(Fp) = 1 + p− t,

2. #J (C)(Fp) = 1− t+ 2p+ s− tp+ p2,

3. |s| < 4p, and

4. |t| < 4
√
p.

Given these facts, we hope for a Schoof-style algorithm to compute s and t, and
the following theorem gives us just that.
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Theorem. Let C/Fp be a genus 2 curve, C : y2 = f(x), such that J (C)
is simple and ordinary and (End(J (C)) ⊗ Q) is some CM-field K, where the
maximal totally real subfield of K is K0 and the only roots of unity in K are
±1. Then for a totally positive element µ ∈ OK0

such that NormK0/Q(µ) = ` is
prime, the factorisation of

Gµ(j1(f), j2(f), j3(f), Z1) mod p = f1 · · · fn

into irreducible polynomials in Fp[Z1] satisfies one of

1. deg(f1) = 1 and deg(f2) = `,

2. deg(f1) = 2 and for i > 1, deg(fi) = r, or

3. deg(f1) = deg(f2) = 1, and for i > 2, deg(fi) = r, or

4. for every i, deg(fi) = r.

Furthermore, there exist primitive 2rth-roots of unity ζ2r and ζ ′2r in F` such that

for η2r = ζ2r + ζ−12r and η′2r = ζ ′2r + ζ
′−1
2r , we have

t2 ≡ (η2r + η′2r)
2p mod `,

and
s ≡ ±η2rη′2rp mod `.

Here we define a ‘primitive `th root of unity’ to be 1.

Hence, our point counting algorithm now becomes, given a curve C/Fp with
real multiplication by K0 such that the only roots of unity in the endomorphism
algebra are ±1, with C : y2 = f(x),

1. Compute j1(f), j2(f), j3(f).

2. Compute t2 and s mod ` for many small ` using the theorem above.

3. Find t2 and s using the Chinese Remainder Theorem, and the bounds on
s and t.

4. Check the sign of t with your favourite method (eg. multiplying a random
Fp point in J (C) by the 2 options for #J (Fp)).
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