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These are notes from a talk presented in the Elliptic Curves Seminar at Univer-
siteit Leiden in April 2016, organised by Peter Bruin and Manolis Tzortzakis.
The purpose of these notes is to explain (to some extent) the beautiful proof of
Fermat’s Last Theorem given by Andrew Wiles in [Wil95], by means of showing
that every semistable elliptic curve over Q is modular, and the generalisation of
Wiles’ method by Breuil, Conrad, Diamond and Taylor in [BCDT01] proving
that every elliptic curve over Q is modular. There has been a lot of work in
this area to generalise Wiles’ method to prove modularity of elliptic curves over
more general fields, but unfortunately we will not have time to cover that here.

1 What is modularity?

We first recall the definition of a modular curve of level N ∈ Z>0, as it is needed
to define modularity of an elliptic curve.

Definition 1.1. For N ∈ Z>0, let

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
mod N

}
.

Then Γ0(N) acts on H, the complex upper half plane, by Möbius transforma-
tions, so that we can define

Y0(N) := Γ0(N)\H.
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This is non-compact, but it can be compactified by adding a finite number of
points (called cusps), given by

Γ0(N)\P1(Q).

For this talk, we will define the compact projective algebraic curve

X0(N) := Y0(N) ∪ Γ0(N)\P1(Q)

to be the modular curve of level N .

Definition 1.2. If an elliptic curve E over Q has a finite covering by a modular
curve X0(N) then we say that E is modular.

There is a rich history behind the study of modular elliptic curves, some of
which we now recall:

• In the 1950s and 60s, Shimura and Taniyama conjectured that every el-
liptic curve is modular.

• In 1985, Frey observed that if the Shimura-Taniyama conjecture holds for
semistable elliptic curves over Q, this may prove Fermat’s Last Theorem,
and in 1986 Ribet proved that this is the case.

• In 1995, Wiles proved in [Wil95] that every semistable elliptic curve over
Q is modular, thus proving Fermat’s Last Theorem. He also observed that
the techniques he used could be generalised.

• In 1999, Conrad, Diamond and Taylor proved in [CDT99] that every el-
liptic curve over Q such that 27 does not divide its conductor is modular,
generalising the techniques developed by Wiles.

• In 2001, Breuil, Conrad, Diamond and Taylor proved in [BCDT01] that
every elliptic curve over Q is modular, extending their previous work.

One important consequence of an elliptic curve being modular is that its L-
function L(E, s) extends to a meromorphic function for all complex s, which will
be important for Raymond van Bommel’s talk on the Birch and Swinnerton-
Dyer Conjecture next week. We now recall some representation theory and
define what it means for a representation to be modular (this turns out to be
key in proving that elliptic curves are modular by considering representations
associated to them).

2 Representations and Modularity

We first recall some representation theory as it is essential for later sections.

Definition 2.1.
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1. Let G be a group and k a field. A representation of G over k is a group
homomorphism

ρ : G −→ GL(V )

for some k-vector space V .

2. Let k be a field and A a k-algebra. A representation of A is a k-algebra
homomorphism

ρ : A −→ Endk(V )

for some k-vector space V .

We can associate representations to elliptic curves; we now define the `-adic
Galois representation of an elliptic curve.

Definition 2.2. The `-adic Tate module of an elliptic curve E over Q is given
by

T`(E) = lim
∞←n

E[`n],

where the inverse limit is taken with respect to multiplication by `.

The `-adic Tate module is a free Z`-module of rank 2. Now Gal(Q/Q) acts
continuously on E[`n], and this action commutes with multiplication by `, so
that in particular there exists a representation

ρE,` : Gal(Q/Q) −→ Aut(T`(E)).

This is defined to be the `-adic Galois representation of E. We will define the
notion of modularity of Galois representations, since via the above representa-
tion this will eventually give us modularity of elliptic curves. We first need to
define some other properties of representations.

Definition 2.3. Let G be a group, let k be a field and let ρ : G→ GL(V ) be a
representation of G over k. Then we say that ρ is reducible if there is a propoer
non-trivial k-vector subspace W of V such that for every g ∈ G,

ρ(g)W ⊆W.

Otherwise, we say that ρ is irreducible. If every lift of ρ to a representation of
G over k, the algebraic closure of k, is irreducible, we say that ρ is absolutely
irreducible.

Definition 2.4. Let G be a group and k a field. For k-vector spaces V1 and
V2 and representations ρi : G→ GL(Vi) for i = 1, 2, we say that ρ1 and ρ2 are
equivalent if there exists a k-vector space isomorphism

α : V1 −→ V2

such that for every g ∈ G,

α ◦ ρ(g) ◦ α−1 = ρ′(g).
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Definition 2.5. Let K be a local field, and K ⊂ L a Galois extension of K.
The inertia group IL/K is defined to be

IL/K = {σ ∈ Gal(L : K) : ∀x ∈ OL, σ(x) ≡ x mod mL} ,

where OL denotes the valuation ring of L (i.e. all the elements of L that have
non-negative valuation) and mL is the maximal ideal of OL.

Exercises 2.6. 1. Suppose that K = Qp, where p is a rational prime that
is inert in Qp(

√
2), and suppose that L = Qp(

√
2). Show that IL/K = Id.

2. Show that IQp(
√
p)/Qp

= Gal(Qp(
√
p)/Qp) = C2.

Definition 2.7. Let ` be a rational prime, let V be a Q`-vector space and let
ρ : Gal(Q/Q)→ GL(V ) be a representation. Let p 6= ` be a rational prime. For
p a prime in Q above p, we define Ip to be the image of IQp/Qp

in Gal(Q/Q)

under the natural embedding

Gal(Qp/Qp) ↪→ Gal(Q/Q).

We say that ρ is unramified at p if for every p above p, we have

Ip ∈ ker(ρ).

We have now defined what it means for a representation to be reducible,
irreducible, absolutely irreducible and unramified, and when 2 representations
are equivalent. In order to define what it means for a representation to be
modular, we must first define cusp forms. To this end, replacing Γ0(N) in
Theorem 1.1 by

Γ1(N) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
mod N

}
,

we define the compact projective algebraic curve X1(N) in the same way that
we defined X0(N).

Definition 2.8. A cusp form of weight k ∈ Z≥1 and level N ∈ Z≥1 is a
holomorphic function

f : H −→ C

such that

1. for every M =

(
a b
c d

)
∈ Γ1(N) and for every z ∈ H, we have

f

(
az + b

cz + d

)
= (cz + d)kf(z),

and

2. |f(z)|2(Im(z))k is bounded on H.
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we denote the finite dimensional C-vector space of cusp forms of weight k and
level N by Sk(N).

Every f ∈ Sk(N) has a Fourier expansion given by

f(z) =

∞∑
n=1

cn(f)e2πinz.

Definition 2.9. The L-series of f ∈ Sk(N) at s ∈ C is defined by

L(f, s) =

∞∑
n=1

cn(f)/ns.

We will need the following aspects of cusp forms:

1. For every prime p that does not divide N , there exists a linear operator

Tp : Sk(N)→ Sk(N)

called a Hecke operator. (There is an explicit definition but we won’t need
it).

2. Operators Tp for p not dividing N can be simultaneously diagonlised on
Sk(N) and a simultaneous eigenvector is called an eigenform.

3. For f an eigenform with eigenvalues ap(f), the eigenvalues are algebraic
integers and

cp(f) = ap(f)c1(f).

Now work of Deligne, Riber, Serre and Shimura gives us the following theo-
rem, which describes how to associate a representation to a cusp form. Here all
notation is as above.

Theorem 2.10. Let λ be a place of the algebraic closure of Q in C above `,
and let Qλ be the algebraic closure of Q` as a Q-algebra via λ. If f ∈ Sk(N) is
an eigenform, the there exists and unique continuous irreducible representation

ρf,λ : Gal(Q/Q) −→ GL2(Qλ)

such that for every p not dividing N`, we have that ρf,λ is unramified at p and

tr(ρf,λ(Frobp)) = ap(f).

Remark 2.11. Let ι : Gal(Qp/Qp) ↪→ Gal(Q/Q) be the natural embedding.
Then we define Frobp to be the image under ι of a lift of a topological generator
of Gal(Fp/Fp). For every choice of Frobp ∈ Gal(Q/Q), the image under ρf,λ
will be the same because ρf,λ is unramified.

Now we can define what it means for a representation to be modular!
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Definition 2.12. Suppose that

ρ : Gal(Q/Q) −→ GL2(Qλ)

is a continuous representation. If there exist k,N ∈ Z>0 such that there exists
an eigenform f ∈ Sk(N) and a place λ|` such that

ρ ∼ ρf,λ,

then we say that ρ is modular. Furthermore, if a continuous representation ρ
for Gal(Q/Q) over Q`, F` or F` lifts to a modular representation, then we say
that ρ is modular.

3 The main theorems required to prove modu-
larity of elliptic curves over Q

Langlands and Tunnel had already proved that an irreducible representation

ρE,3 : Gal(Q/Q) −→ Aut(E[3])

is modular, giving Wiles part of the proof. The first theorem that Wiles proves
(using the Langlands-Tunnel theorem) in [Wil95] is as follows.

Theorem 3.1. Let E be an elliptic curve over Q. Suppose that

1. E has good or multiplicative reduction at 3,

2. ρE,3|Q(
√
−3) absolutely irreducible, and

3. define Dq = {σ ∈ Gal(Qq/Qq) : σ(q) = q} ≤ Iq; for any q ≡ −1 mod 3
either ρE,3|Dq

is reducible over the algebraic closure or ρE,3|Iq is absolutely

irreducible. Here Iq is the inertia group for Qq/Qq. Then E is modular.

Remark 3.2. Recall that an elliptic curve over Q has multiplicative reduction
at a prime p if the reduction of the elliptic curve mod p is singular, and its unique
singular point is nodal. Recall also that an elliptic curve over Q is semistable if
it has good or multiplicative reduction at every prime p.

Wiles uses the above theorem to deduce his main theorem below.

Theorem 3.3. Let E be a semistable elliptic curve over Q. Then E is modular.

To prove this, Wiles splits into 2 cases. For the case in which ρE,3 is irre-
ducible, he just needs to show that the conditions of Theorem 3.1 are satisfied
(note that this is the Langlands-Tunnel case). However, for the case in which
ρE,3 is reducible, Theorem 3.1 does not apply. Wiles instead shows that

ρE,3 reducible ⇒ ρE,5 irredcuible.

For the 5-adic case there is no Langlands-Tunnel, so an analogy of Theorem 3.1
is more difficult. Wiles shows instead that if ρE,5 is irreducible, then there is no

quadratic twist E′ of E over Q(
√

5) such that
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1. ρE,5 is an induced representation over Q(
√

5), and

2. E′ is semistable at 5.

He proves an analogous statement to Theorem 3.1 with these hypotheses,
that is, he proves that

ρE,5 irreducible ⇒ E modular,

thus proving that all semistable elliptic curves over Q are modular.
Breuil, Conrad, Diamond and Taylor were able to remove the condition

that E is semistable by further studying the 5-adic representation E. In 1999,
Conrad, Diamond and Taylor proved the following theorem.

Theorem 3.4. Let E be an elliptic curve over Q. If ρE,5 is modular or
ρE,5|Q(

√
5) is not absolutely irreducible, then E is modular.

From this they could deduce that every elliptic curve over Q with conductor
not divisible by 27 is modular. The final step in showing that all elliptic curves
over Q are modular was the theorem of Breuil, Conrad, Diamond and Taylor in
2001:

Theorem 3.5. Any continuous absolutely irreducible representation

ρ : Gal(Q/Q) −→ GL2(F5)

with cyclotomic determinant is modular.
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