

™BORDEAUX

université

Modular Polynomials for Hilbert Modular Forms

Chloe Martindale

Supervisor: Marco Streng

Motivation

Definition 1 The modular polynomial of prime level p is a polynomial

 $\Phi_p(X,Y) \in \mathbb{Z}[X,Y]$

which, for all $\tau \in \mathbb{H}$, satisfies

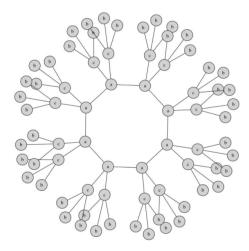
 $\Phi_p(j(\tau), j(p\tau)) = 0,$

where $j(\tau)$ is the *j*-invariant for elliptic curves.

- Given the *j*-invariant *j* of en elliptic curve over *k*, we can find the *j*-invariants of all those elliptic curves which are *p*-isogenous to it by computing the roots of $\Phi_p(j,Y) \in k(Y).$
- Analogues have been computed so that given an Igusa invariant of a genus 2 curve, we can find the Igusa invariants of all those genus 2 curves which are *p*-isogenous to it, but these analogues have huge coefficients and are difficult to handle in practise.
- In our work, we add the constraint of **real multiplication**, and compute modular polynomials for genus 2 which are much smaller and easier to handle. We also give a theoretical algorithm to compute modular polynomials for abelian varieties of any dimension.

An application - isogeny graphs

- Using the structure of **isogeny graphs** together with our modular polynomials we have a fast method for **computing endomorphism rings**.
- The isogeny graphs that we have for abelian varieties without taking into account the real multiplication do not in general have a nice structure.
- Taking into account real multiplication gives a 'nice' structure in many (maybe all) cases, here is an example computed by Sorina Ionica using AVIsogenies:



Setup

- Let F be a totally real number field of degree g over \mathbb{Q} .
- Let \mathcal{O}_F be the maximal order of F, and let \mathcal{O}_F^{\vee} be its trace dual.
- Let \mathbb{H}^{g} denote q copies of the complex upper half plane.
- Let $\operatorname{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee})$ be the matrix group given by

$$\left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \in \operatorname{SL}_2(F) : a, d \in \mathcal{O}_F, b \in \mathcal{O}_F^{\vee}, c \in (\mathcal{O}_F^{\vee})^{-1} \right\}.$$

Definition 2 Let \mathcal{A} be an abelian variety of genus g, with a principal polarization given by $\xi : \mathcal{A} \xrightarrow{\sim} \mathcal{A}^{\vee}$ and real multiplication via the embedding $\iota : \mathcal{O}_F \hookrightarrow \operatorname{End}(\mathcal{A})$ such that the image of \mathcal{O}_F in End(\mathcal{A}) is stable under the Rosati involution. Then we say that $(\mathcal{A}, \xi, \iota)$ is a principally polarized abelian variety of genus g with real multiplication by \mathcal{O}_F .

We can define an action of $\mathrm{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee})$ on \mathbb{H}^g , under which the moduli space of prinicipally polarized complex abelian varieties of genus g with real multiplication by \mathcal{O}_F is given by

$\mathrm{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee}) \setminus \mathbb{H}^g.$

- Denote by \mathcal{M}_F the \mathbb{C} -algebra of Hilbert modular forms for $\mathrm{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee})$.
- Denote by $Q(\mathcal{M}_F)$ the \mathbb{C} -algebra of quotients of elements of \mathcal{M}_F of equal weight (inside the fraction field).

Definition 3 Let $(\mathcal{A}, \xi, \iota)$ be a principally polarized complex abelian variety of genus qwith real multiplication by \mathcal{O}_F which corresponds to $\tau \in \mathrm{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee}) \setminus \mathbb{H}^g$ under the moduli correspondence. Fix an r-tuple $(J_1,\ldots,J_r) \in Q(\mathcal{M}_F)^{\times r}$ such that, for every $\tau \in \mathrm{SL}(\mathcal{O}_F \oplus \mathcal{O}_F^{\vee}) \setminus \mathbb{H}^g$, the r-tuple $(J_1(\tau), \ldots, J_r(\tau)) \in (\mathbb{C} \cup \{\infty\})^{\times r}$ determines $(\mathcal{A}, \xi, \iota)$ up to isomorphism. We will call

 $(J_1(\tau),\ldots,J_r(\tau))$

the isomorphism invariant of $(\mathcal{A}, \xi, \iota)$. This is our analogue of the *j*-invariant for elliptic curves.

The algorithm

Example in genus 2

INPUT:

- Totally real number field $F = \mathbb{Q}(\sqrt{5})$.
- Functions in $Q(\mathcal{M}_F)$ satisfying the conditions of Definition 3 given by

$$J_1(\tau) = C_1 \frac{E_6(\tau) - E_2(\tau)^3}{E_2(\tau)^3}, \ J_2(\tau) = \frac{C_2 E_{10}(\tau) - C_3 E_2(\tau)^2 E_6(\tau) + C_4 E_2(\tau)^5}{E_2(\tau)^5},$$

where $E_2(\tau)$, $E_6(\tau)$ and $E_{10}(\tau)$ are Eisenstein series for $SL_2(\mathcal{O}_F)$ of weights 2, 6 and 10 respectively, and the C_i are explicit rational numbers. (The functions J_1 and J_2 are called **Gundlach** invariants).

• The level, a totally positive prime element in \mathcal{O}_F , for example $\mu = 5 - 2\sqrt{5}$ (which has norm 5).

OUTPUT:

The 4 polynomials described under 'The algorithm':

 $G_1 \in \mathbb{Q}(X_1, X_2, Z_1), \ G_2 \in \mathbb{Q}(X_1, X_2, Z_2),$ $H_{1,2} \in \mathbb{Q}(X_1, X_2, Z_1, Z_2), \ H_{2,1} \in \mathbb{Q}(X_1, X_2, Z_1, Z_2).$

- The largest coefficients are of the order 10^{30} .
- The amount of bits required to write down the polynomials is estimated to be 15 (in comparison with $\sim 5^{12}$ for the Siegel modular polynomials).

• K. Lauter, T. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory 131 References (2011) 936-958. • G. Bisson, R. Cosset, D. Robert et al. AVIsogenies (Abelian Varieties and Isogenies), MAGMA package. • S. Nagaoka, On the ring of Hilbert modular forms over Z, J. Math. Soc. Japan 35 (1983) 589-608. • E. Z. Goren, Lectures on Hilbert Modular Varieties and Modular Forms, CRM Monograph Series (2002) Volume 14. • H.L. Resnikoff, On the Graded Ring of Hilbert modular forms associated with $\mathbb{Q}(\sqrt{5})$, Math. Ann. 208 (1974) 161-170. • K.-B. Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkrpers $\mathbb{Q}(\sqrt{5})$, Math. Ann. 152 • M. Streng, Complex Multiplication of Abelian Surfaces PhD thesis, Universiteit Leiden (2010). (1963) 226-256. • G. van der Geer, Hilbert Modular Surfaces, Springer-Verlang (1987). • J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200. • S. Ionica, E. Thomé, Isogeny graphs with maximal real multiplication, Cryptology ePrint Archive, Report 2014/230 (2014).

INPUT:

- An integer $g \geq 2$, and a totally real number field F of degree g over \mathbb{Q} .
- An appropriate choice of functions $\{J_1, \ldots, J_r\}$ for $Q(\mathcal{M}_F)$, and q-expansions for each numerator and denominator.
- A totally positive prime element μ of \mathcal{O}_F .

OUTPUT:

A set of r^2 polynomials

$$\left\{\begin{array}{c}G_i(X_1,\ldots,X_r,Z_i)\in\mathbb{Q}[X_1,\ldots,X_r,Z_i]\\H_{i,j}(X_1,\ldots,X_r,Z_i,Z_j)\in\mathbb{Q}[X_1,\ldots,X_r,Z_i,Z_j]\end{array}\right\}_{\substack{i=1,\ldots,r\\j=1,\ldots,r,\,j\neq i}},$$

where the $H_{i,j}$ are linear in $Z_1, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_r$.

• This looks like the modular polynomial for elliptic curves: after carefully defining a ' μ -isogeny' in an analogous way to a *p*-isogeny for elliptic curves, but taking into account the real multiplication and the polarizations, we can deduce the following:

For $(\mathcal{A}, \xi, \iota)$ a principally polarized abelian variety with isomorphism invariant $(J_1(\tau),\ldots,J_r(\tau))$, define

$$S := \left\{ \begin{array}{c} G_i(J_1(\tau), \dots, J_r(\tau), Z_i) \in \mathbb{Q}[X_1, \dots, X_r, Z_i] \\ H_{i,j}(J_1(\tau), \dots, J_r(\tau), Z_i, Z_j) \in \mathbb{Q}[X_1, \dots, X_r, Z_i, Z_j] \end{array} \right\}_{\substack{i=1, \dots, r\\ j=1, \dots, r, \ j\neq i}}$$

Then generically

$$\mathcal{A}', \xi', \iota')$$
 is μ -isogenous to $(\mathcal{A}, \xi, \iota)$

its isomorphism invariant $(J_1(\tau'), \ldots, J_r(\tau'))$ is a common zero of the polynomials in \mathcal{S} .

- The zeroes of the polynomials in S are easy to compute: $G_i(J_1(\tau), \ldots, J_r(\tau), Z_i)$ is univariate and $H_{i,i}(J_1(\tau), \ldots, J_r(\tau), Z_i, Z_i)$ is linear in $Z_i!$
- 2015 Universiteit Leiden, The Netherlands, E-mail: chloe.martindale@math.leidenuniv.nl