université
${ }^{\text {de }}$ BORDEAUX

Modular Polynomials for Hilbert Modular Forms

Chloe Martindale

Supervisor: Marco Streng

Abstract

\section*{Motivation}

Definition 1 The modular polynomial of prime level p is a polynomial $$
\Phi_{p}(X, Y) \in \mathbb{Z}[X, Y]
$$ which, for all $\tau \in \mathbb{H}$, satisfies $$
\Phi_{p}(j(\tau), j(p \tau))=0
$$ where $j(\tau)$ is the j-invariant for elliptic curves. - Given the j-invariant j of en elliptic curve over k, we can find the j-invariants of all those elliptic curves which are p-isogenous to it by computing the roots of $\Phi_{p}(j, Y) \in k(Y)$. - Analogues have been computed so that given an Igusa invariant of a genus 2 curve, we can find the Igusa invariants of all those genus 2 curves which are p-isogenous to it, but these analogues have huge coefficients and are difficult to handle in practise. - In our work, we add the constraint of real multiplication, and compute modular polynomials for genus 2 which are much smaller and easier to handle. We also give a theoretical algorithm to compute modular polynomials for abelian varieties of any dimension.

An application - isogeny graphs

- Using the structure of isogeny graphs together with our modular polynomials we have a fast method for computing endomorphism rings.
- The isogeny graphs that we have for abelian varieties without taking into account the real multiplication do not in general have a nice structure.
- Taking into account real multiplication gives a 'nice' structure in many (maybe all) cases, here is an example computed by Sorina Ionica using AVIsogenies:

Example in genus 2

INPUT:

- Totally real number field $F=\mathbb{Q}(\sqrt{5})$.
- Functions in $Q\left(\mathcal{M}_{F}\right)$ satisfying the conditions of Definition 3 given by

$$
J_{1}(\tau)=C_{1} \frac{E_{6}(\tau)-E_{2}(\tau)^{3}}{E_{2}(\tau)^{3}}, J_{2}(\tau)=\frac{C_{2} E_{10}(\tau)-C_{3} E_{2}(\tau)^{2} E_{6}(\tau)+C_{4} E_{2}(\tau)^{5}}{E_{2}(\tau)^{5}}
$$

where $E_{2}(\tau), E_{6}(\tau)$ and $E_{10}(\tau)$ are Eisenstein series for $\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$ of weights 2,6 and 10 respectively, and the C_{i} are explicit rational numbers. (The functions J_{1} and J_{2} are called Gundlach invariants).

- The level, a totally positive prime element in \mathcal{O}_{F}, for example $\mu=5-2 \sqrt{5}$ (which has norm 5).

OUTPUT:

The 4 polynomials described under 'The algorithm'

$$
\begin{array}{cl}
G_{1} \in \mathbb{Q}\left(X_{1}, X_{2}, Z_{1}\right), \quad G_{2} \in \mathbb{Q}\left(X_{1}, X_{2}, Z_{2}\right), \\
H_{1,2} \in \mathbb{Q}\left(X_{1}, X_{2}, Z_{1}, Z_{2}\right), \quad H_{2,1} \in \mathbb{Q}\left(X_{1}, X_{2}, Z_{1}, Z_{2}\right) .
\end{array}
$$

- The largest coefficients are of the order 10^{30}.
- The amount of bits required to write down the polynomials is estimated to be 15 (in comparison with $\sim 5^{12}$ for the Siegel modular polynomials).

Setup

- Let F be a totally real number field of degree g over \mathbb{Q}.
- Let \mathcal{O}_{F} be the maximal order of F, and let \mathcal{O}_{F}^{\vee} be its trace dual.
- Let \mathbb{H}^{g} denote g copies of the complex upper half plane.
- Let $\operatorname{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right)$ be the matrix group given by

$$
\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(F): a, d \in \mathcal{O}_{F}, b \in \mathcal{O}_{F}^{\vee}, c \in\left(\mathcal{O}_{F}^{\vee}\right)^{-1}\right\}
$$

Definition 2 Let \mathcal{A} be an abelian variety of genus g, with a principal polarization given by $\xi: \mathcal{A} \tilde{\rightarrow}_{\mathcal{A}}{ }^{\vee}$ and real multiplication via the embedding $\iota: \mathcal{O}_{F} \hookrightarrow \operatorname{End}(\mathcal{A})$ such that the image of \mathcal{O}_{F} in $\operatorname{End}(\mathcal{A})$ is stable under the Rosati involution. Then we say that $(\mathcal{A}, \xi, \iota)$ is a principally polarized abelian variety of genus g with real multiplication by \mathcal{O}_{F}.

We can define an action of $\operatorname{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right)$ on \mathbb{H}^{g}, under which the moduli space of prinicipally polarized complex abelian varieties of genus g with real multiplication by \mathcal{O}_{F} is given by

$$
\mathrm{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right) \backslash \mathbb{H}^{g}
$$

- Denote by \mathcal{M}_{F} the \mathbb{C}-algebra of Hilbert modular forms for $\operatorname{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right)$.
- Denote by $Q\left(\mathcal{M}_{F}\right)$ the \mathbb{C}-algebra of quotients of elements of \mathcal{M}_{F} of equal weight (inside the fraction field).
Definition 3 Let $(\mathcal{A}, \xi, \iota)$ be a principally polarized complex abelian variety of genus g with real multiplication by \mathcal{O}_{F} which corresponds to $\tau \in \operatorname{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right) \backslash \mathbb{H}^{g}$ under the moduli correspondence. Fix an r-tuple $\left(J_{1}, \ldots, J_{r}\right) \in Q\left(\mathcal{M}_{F}\right)^{\times r}$ such that, for every $\tau \in \operatorname{SL}\left(\mathcal{O}_{F} \oplus \mathcal{O}_{F}^{\vee}\right) \backslash \mathbb{H}^{g}$, the r-tuple $\left(J_{1}(\tau), \ldots, J_{r}(\tau)\right) \in(\mathbb{C} \cup\{\infty\})^{\times r}$ determines $(\mathcal{A}, \xi, \iota)$ up to isomorphism. We will call

$$
\left(J_{1}(\tau), \ldots, J_{r}(\tau)\right)
$$

the isomorphism invariant of $(\mathcal{A}, \xi, \iota)$. This is our analogue of the j-invariant for elliptic curves.

The algorithm

INPUT:

- An integer $g \geq 2$, and a totally real number field F of degree g over \mathbb{Q}.
- An appropriate choice of functions $\left\{J_{1}, \ldots, J_{r}\right\}$ for $Q\left(\mathcal{M}_{F}\right)$, and q-expansions for each numerator and denominator.
- A totally positive prime element μ of \mathcal{O}_{F}

OUTPUT:

A set of r^{2} polynomials

$$
\left\{\begin{array}{c}
G_{i}\left(X_{1}, \ldots, X_{r}, Z_{i}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{r}, Z_{i}\right] \tag{}\\
H_{i, j}\left(X_{1}, \ldots, X_{r}, Z_{i}, Z_{j}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{r}, Z_{i}, Z_{j}\right]
\end{array}\right\}
$$

where the $H_{i, j}$ are linear in $Z_{1}, \ldots, Z_{i-1}, Z_{i+1}, \ldots, Z_{r}$.

- This looks like the modular polynomial for elliptic curves: after carefully defining a ' μ-isogeny' in an analogous way to a p-isogeny for elliptic curves, but taking into account the real multiplication and the polarizations, we can deduce the following:
For $(\mathcal{A}, \xi, \iota)$ a principally polarized abelian variety with isomorphism invariant $\left(J_{1}(\tau), \ldots, J_{r}(\tau)\right)$, define

$$
\mathcal{S}:=\left\{\begin{array}{c}
G_{i}\left(J_{1}(\tau), \ldots, J_{r}(\tau), Z_{i}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{r}, Z_{i}\right] \\
H_{i, j}\left(J_{1}(\tau), \ldots, J_{r}(\tau), Z_{i}, Z_{j}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{r}, Z_{i}, Z_{j}\right]
\end{array}\right\}
$$

$\}_{\substack{i=1, \ldots, r \\ j=1, \ldots, j i j i}}$
Then generically

$$
\left(\mathcal{A}^{\prime}, \xi^{\prime}, \iota^{\prime}\right) \text { is } \mu \text {-isogenous to }(\mathcal{A}, \xi, \iota)
$$

\Leftrightarrow
its isomorphism invariant $\left(J_{1}\left(\tau^{\prime}\right), \ldots, J_{r}\left(\tau^{\prime}\right)\right)$ is a common zero of the polynomials in \mathcal{S}.

- The zeroes of the polynomials in \mathcal{S} are easy to compute: $G_{i}\left(J_{1}(\tau), \ldots, J_{r}(\tau), Z_{i}\right)$ is univariate and $H_{i, j}\left(J_{1}(\tau), \ldots, J_{r}(\tau), Z_{i}, Z_{j}\right)$ is linear in Z_{j} !

References

- G. Bisson, R. Cosset, D. Robert et al. AVIsogenies (Abelian Varieties and Isogenies), MAGMA package.
- E. Z. Goren, Lectures on Hilbert Modular Varieties and Modular Forms, CRM Monograph Series (2002) Volume 14.
- K.-B. Gundlach, Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkrpers $\mathbb{Q}(\sqrt{5})$, Math. Ann. 152
(1963) $226-256$.
(1963) 226-256.
- J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175-200
- S. Ionica, E. Thomé, Isogeny graphs with maximal real multiplication, Cryptology ePrint Archive, Report 2014/230 (2014).

[^0]
[^0]: - K. Lauter, T. Yang, Computing genus 2 curves from invariants on the Hilbert moduli space, Journal of Number Theory 131
 (2011) 936-958.
 - S. Nagaoka, On the ring of Hilbert modular forms over \mathbb{Z}, J. Math. Soc. Japan 35 (1983) 589-608.
 - H.L. Resnikoff, On the Graded Ring of Hilbert modular forms associated with $\mathbb{Q}(\sqrt{5})$, Math. Ann. 208 (1974) 161-170.
 - M. Streng, Complex Multiplication of Abelian Surfaces PhD thesis, Universiteit Leiden (2010).
 - G. van der Geer, Hilbert Modular Surfaces, Springer-Verlang (1987).

