Constructing Canonical Strategies For Parallel Implementation Of Isogeny Based Cryptography

Aaron Hutchinson and Koray Karabina
Florida Atlantic University

INDOCRYPT 2018

Acknowledgment: This research was supported by the Army Research Office Grant W911NF-17-1-0311

Outline

(1) Elliptic Curve Diffie-Hellman and Isogenies
(2) Computing Isogenies
(3) Parallelization of SIDH

- Per-curve Parallelization Model
- Consecutive-curve Parallelization Model

4 Future directions

ECDH: Elliptic Curve Diffie-Hellman

$\langle P\rangle \subseteq E$

Elliptic curves and isogenies

Definition

Let $\left(E_{1}, O_{1}\right)$ and $\left(E_{2}, O_{2}\right)$ be elliptic curves. An isogeny from E_{1} to E_{2} is a rational map $\phi: E_{1} \rightarrow E_{2}$ satisfying $\phi\left(O_{1}\right)=O_{2}$.

Theorem

Let E be an elliptic curve.

- If H is a finite subgroup of E, then there exists an elliptic curve E^{\prime} and an isogeny $\phi: E \rightarrow E^{\prime}$ such that $\operatorname{ker}(\phi)=H$.
- If $\phi: E \rightarrow E_{1}$ and $\psi: E \rightarrow E_{2}$ are isogenies such that $\operatorname{ker}(\phi)=\operatorname{ker}(\psi)$, then there is an isomorphism $\alpha: E_{1} \rightarrow E_{2}$ such that $\alpha \phi=\psi$.

We write E / H for the curve E^{\prime}.

SIDH: Supersingular Isogeny-based Diffie-Hellman

$\operatorname{ker}\left(\phi_{A}\right)=\left\langle m_{A} P_{A}+n_{A} Q_{A}\right\rangle \quad \operatorname{ker}\left(\phi_{B}^{\prime}\right)=\left\langle m_{B} \phi_{A}\left(P_{B}\right)+n_{B} \phi_{A}\left(Q_{B}\right)\right\rangle$

$\operatorname{ker}\left(\phi_{B}\right)=\left\langle m_{B} P_{B}+n_{B} Q_{B}\right\rangle$

$$
\operatorname{ker}\left(\phi_{A}^{\prime}\right)=\left\langle m_{A} \phi_{B}\left(P_{A}\right)+n_{A} \phi_{B}\left(Q_{A}\right)\right\rangle
$$

Computational problems

- Given a curve E / \mathbb{F}_{q} and a point $R \in E\left(\mathbb{F}_{q}\right)$ of order ℓ^{n}, compute a curve E_{n}, where $\phi: E \rightarrow E_{n}$ with kernel $\langle R\rangle$. Also, evaluate ϕ at some points.
- Velu's formulas are not very helpful when n is large.
- The decomposition strategy: Set $E_{0}=E, R_{0}=R$, and factor ϕ as a composition of n degree- ℓ isogenies $\phi_{i}, i=0, \ldots, n-1$:

$$
\phi=\phi_{n-1} \circ \phi_{n-2} \circ \cdots \circ \phi_{1} \circ \phi_{0}, \phi: E \rightarrow E_{n}, \operatorname{Kernel}(\phi)=R
$$

with

$$
\begin{aligned}
& \phi_{i}: E_{i} \rightarrow E_{i+1}, \operatorname{Kernel}\left(\phi_{i}\right)=\ell^{n-i-1} R_{i}, R_{i+1}=\phi_{i}\left(R_{i}\right) \\
& E= E_{0} \xrightarrow{\phi_{0}} E_{1} \xrightarrow{\phi_{1}} \cdots \xrightarrow{\phi_{n-2}} E_{n-1} \xrightarrow{\phi_{n-1}} E_{n}
\end{aligned}
$$

Traversing trees

$$
\begin{gathered}
E=E_{0} \xrightarrow{\phi_{0}} E_{1} \xrightarrow{\phi_{1}} E_{2} \longrightarrow \cdots \xrightarrow{\phi_{n-1}} E_{n} \\
\operatorname{ker}\left(\phi_{n-1} \cdots \phi_{2} \phi_{1}\right)=\langle R\rangle, \quad \operatorname{deg}\left(\phi_{i}\right)=\ell
\end{gathered}
$$

Two strategies: Serial vs. parallel

Strategy S_{2}

- Take $p=1, q=2$
- The cost of S_{1} is $3 p+2 q=7$ and S_{2} is $2 p+3 q=8$
- The parallelized cost of S_{1} is $3 p+2 q=7$ and S_{2} is $2 p+2 q=6$
- S_{1} looses its optimality when parallelized

Parallelization of SIDH

- Evaluating a strategy S involves the following computations:
(1) computation of elliptic curves E_{i} from a small subgroup H_{i}.
(2) the evaluation of $[\ell]$ at varying points on varying curves.
(3) the evaluation of isogenies at varying points on varying curves.

Theorem

Let S be a canonical strategy with $n \geq 3$ leaves and let a and b be distinct positive slope edges in S. Then a and b cannot be parallelized together.

Parallelization of SIDH

- \mathcal{L}_{i} : Positive slope diagonals indexed top-down
- \mathcal{R}_{i} : Negative slope diagonals indexed bottom-up
- P_{i} : Positive slope edges lying on \mathcal{L}_{i+1}
- Q_{i} : Negative slope edges lying between \mathcal{L}_{i} and \mathcal{L}_{i+1}

\square	$P_{0}(S), 3$ edges
$P_{1}(S)$, empty	
	$P_{2}(S), 1$ edge
$P_{3}(S)$, empty	
	$Q_{1}(S), 2$ edges
	$Q_{2}(S), 1$ edge
$Q_{3}(S), 1$ edge	

Figure: An example of the lines \mathcal{L}_{i} and \mathcal{R}_{i} and the bins $P_{i}(S)$ and $Q_{i}(S)$ on a strategy S with $n=4$.

Parallelization of SIDH: PCP model

Parallelization Model (Per-Curve Parallel)

The only computations that we allow to be parallelized are isogeny evaluations which involve the same isogeny.

- Evaluate $P_{0}(S)$ in serial,
- Evaluate $Q_{1}(S)$ in parallel,
- Evaluate $P_{1}(S)$ in serial,
- Evaluate $Q_{2}(S)$ in parallel,

Parallelization of SIDH: PCP model

Intuition:

- Cost of a strategy is the sum of the cost of the four pieces: $S^{\prime} \cup r \hat{r}$, $S^{\prime \prime}, r r^{\prime}$, and $\hat{r} r^{\prime \prime}$
- $r r^{\prime}$ and $\hat{r} r^{\prime \prime}$ cannot be parallelized, and they cost $(n-i) p$ and q
- We write

$$
\begin{aligned}
C^{K}(S) & =C^{K}\left(S^{\prime} \cup r \hat{r}\right)+C^{K}\left(S^{\prime \prime}\right)+C^{K}\left(r r^{\prime}\right)+C^{K}\left(\hat{r} r^{\prime \prime}\right) \\
& =C_{p, q}^{K}\left(S^{\prime} \cup r \hat{r}\right)+C_{p, q}^{K}\left(S^{\prime \prime}\right)+(n-i) p+q
\end{aligned}
$$

Parallelization of SIDH: PCP model

$$
\begin{aligned}
C^{k / K}(S) & =C^{k / K}\left(S^{\prime} \cup r \hat{r}\right)+C^{k / K}\left(S^{\prime \prime}\right)+C^{k / K}\left(r r^{\prime}\right)+C^{k / K}\left(\hat{r} r^{\prime \prime}\right) \\
& =C_{p, q}^{k / K}\left(S^{\prime} \cup r \hat{r}\right)+C_{p, q}^{k / K}\left(S^{\prime \prime}\right)+(n-i) p+q . \\
& = \begin{cases}C_{p, q}^{k-1 / K}\left(S^{\prime}\right)+C_{p, q}^{k / K}\left(S^{\prime \prime}\right)+(n-i) p+q & \text { if } k>1 \\
C_{p, q}^{K / K}\left(S^{\prime}\right)+C_{p, q}^{k / K}\left(S^{\prime \prime}\right)+(n-i) p+i q & \text { if } k=1\end{cases}
\end{aligned}
$$

Corollary

Minimizing $C^{k / K}\left(S^{\prime \prime}\right)$ and

$$
\begin{cases}C_{p, q}^{k-1 / K}\left(S^{\prime}\right) & \text { if } k>1 \\ C_{p, q}^{K / K}\left(S^{\prime}\right) & \text { if } k=1\end{cases}
$$

will minimize $C^{k / K}(S)$ among strategies with partition $(i, n-i)$.

A Toy example

$$
K=2:
$$

(a) PCP Model

CCP: A Generalized model

- PCP suffers from idle processors

Parallelization Model (Consecutive-Curve Parallel)

Apply parallelization among:

- $Q_{i}(S) \cup Q_{i-1}(S)$ for $i=2,3, \ldots, n-1$,
- $P_{i}(S) \cup Q_{i}(S)$ for $i=1,2, \ldots, n-1$.

(a) PCP Model

(b) CCP Model

Parallelization of SIDH

- Algorithm computes $C_{p, q}^{K}(S)$ for a given S.
- Compared 3 sets for parameters $n=186, p=25.8, q=22.8$:
- Serially Optimal strategies $(1,623,160)$
- PCP Optimal strategies (randomly sampled 5,000,000)
- Canonical strategies (randomly sampled 5,000,000)

Results and remarks

- Introduced two models of parallelization
- Models are constructive with some optimality results

	K	2	3	4	5	6	7	8
PCP	Cost	25942.2	22521.6	20373.0	19197.0	17941.2	16978.8	16617.0
	\% speedup	$\mathbf{2 4 . 2 7}$	34.26	40.53	43.96	47.63	50.44	$\mathbf{5 1 . 4 9}$
CCP S.O.	Cost	24247.2	21784.8	20941.2	20781.6	20781.6	20781.6	20781.6
	\% speedup	$\mathbf{2 9 . 2 2}$	36.41	38.87	39.34	39.34	39.34	$\mathbf{3 9 . 3 4}$
CCP A.C.	Cost	25440.6	22200.6	20880.6	19825.2	19606.2	19218.6	18739.2
	\% speedup	$\mathbf{2 5 . 7 3}$	35.19	39.05	42.13	42.77	43.90	$\mathbf{4 5 . 3 0}$
CCP P.O.	Cost	23890.2	20515.2	18252.6	17555.4	16482.0	16021.2	15294.6
	\% speedup	$\mathbf{3 0 . 2 6}$	40.11	46.72	48.75	51.89	53.23	$\mathbf{5 5 . 3 5}$

Table: Data for parameters $n=186, p=25.8, q=22.8$. Row PCP: optimal PCP costs over all canonical strategies. Row CCP S.O.: best CCP costs over all $1,623,160$ serially optimal strategies. Row CCP A.C.: best CCP costs among $5,000,000$ randomly sampled canonical strategies. Row CCP P.O: best CCP costs among 5,000,000 randomly sampled PCP optimal strategies. Percent speedup is over the optimal serial cost of 34256.4.

Future research

- Implement to verify results
- Try to find a formula for $C^{K}(n)$ under CCP

