Making and breaking post-quantum cryptographic key exchange with elliptic curves

Chloe Martindale

University of Bristol

IIIT-Delhi, 6 October 2020

Joint work with Péter Kutas, Lorenz Panny, Christophe Petit, and Kate Stange

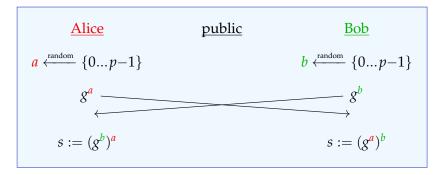
What is this all about?

Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

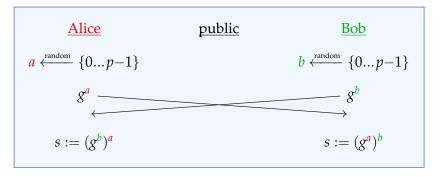
Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p



Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p



Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

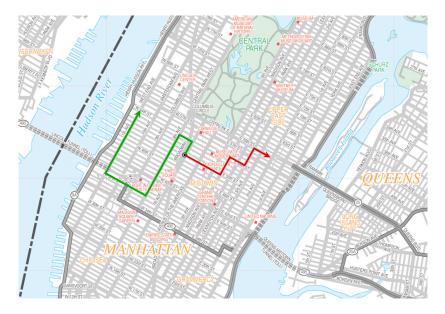
Public parameters:

- a finite group *G* (traditionally \mathbb{F}_p^* , today also elliptic curves)
- an element $g \in G$ of prime order p

Fundamental reason this works: \cdot^{a} and \cdot^{b} are commutative!

Quantum cryptoapocalypse

- Diffie-Hellman relies on the Discrete Logarithm Problem being hard.
 - Read: taking (discrete) logarithms should be much slower than exponentiating.
- Shor's quantum algorithm solves the discrete logarithm problem in polynomial time.
 - Read: with access to a quantum computer, taking discrete logarithms is about as fast as exponentiation.
- Quantum computers that are sufficiently large and stable do not yet exist (probably).
- But they are likely to be only a few years away...



Problem: It is trivial to find paths (subtract coordinates). What do?

• <u>Isogenies</u> are a source of exponentially-sized graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture $\boldsymbol{\wp}$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Stand back!

We're going to do maths.

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation $E: y^2 = x^3 + ax + b.$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation $E: y^2 = x^3 + ax + b.$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is easy to compute.

Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation $E: y^2 = x^3 + ax + b.$

A point on *E* is a solution to this equation *or* the 'fake' point ∞ .

E is an abelian group: we can 'add' points.

- The neutral element is ∞ .
- The inverse of (x, y) is (x, -y).
- The sum of (x_1, y_1) and (x_2, y_2) is $(\lambda^2 - x_1 - x_2, \lambda(2x_1 + x_2 - \lambda^2) - y_1)$

where $\lambda = \frac{y_2 - y_1}{x_2 - x_1}$ if $x_1 \neq x_2$ and $\lambda = \frac{3x_1^2 + a}{2y_1}$ otherwise.

) **not** remember lese formulact

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #1: For each $m \neq 0$, the multiplication-by-*m* map $[m]: E \rightarrow E$ is a degree- m^2 isogeny. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m \times \mathbb{Z}/m.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #2: For any *a* and *b*, the map $\iota: (x, y) \mapsto (-x, \sqrt{-1} \cdot y)$ defines a degree-1 isogeny of the elliptic curves

$$\{y^2 = x^3 + ax + b\} \longrightarrow \{y^2 = x^3 + ax - b\}.$$

It is an isomorphism; its kernel is $\{\infty\}$.

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

Example #3: $(x, y) \mapsto \left(\frac{x^3 - 4x^2 + 30x - 12}{(x-2)^2}, \frac{x^3 - 6x^2 - 14x + 35}{(x-2)^3} \cdot y\right)$ defines a degree-3 isogeny of the elliptic curves $\{y^2 = x^3 + x\} \longrightarrow \{y^2 = x^3 - 3x + 3\}$

over $\mathbb{F}_{71}.$ Its kernel is $\{(2,9),(2,-9),\infty\}.$

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

An isogeny of elliptic curves is a non-zero map $E \rightarrow E'$ that is:

- given by rational functions.
- a group homomorphism.

The degree of a separable* isogeny is the size of its kernel.

An endomorphism of *E* is an isogeny $E \rightarrow E$, or the zero map. The ring of endomorphisms of *E* is denoted by End(E).

Each isogeny $\varphi \colon E \to E'$ has a unique dual isogeny $\widehat{\varphi} \colon E' \to E$ characterized by $\widehat{\varphi} \circ \varphi = \varphi \circ \widehat{\varphi} = [\deg \varphi].$

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

Maths background #3: Fields of definition

Until now: Everything over the algebraic closure. For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over *k* if the coefficients of its equation/formula lie in *k*.

For *E* defined over *k*, let E(k) be the points of *E* defined over *k*.

Maths background #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

¹(up to isomorphism of E')

Maths background #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

¹(up to isomorphism of E')

Maths background #4: Isogenies and kernels

For any finite subgroup *G* of *E*, there exists a unique¹ separable isogeny $\varphi_G \colon E \to E'$ with kernel *G*.

The curve E' is denoted by E/G. (cf. quotient groups)

If *G* is defined over *k*, then φ_G and E/G are also defined over *k*.

Vélu '71: Formulas for computing E/G and evaluating φ_G at a point. Complexity: $\Theta(\#G) \rightsquigarrow$ only suitable for small degrees.

Vélu operates in the field where the points in *G* live.

 \rightarrow need to make sure extensions stay small for desired #*G* \rightarrow this is why we use supersingular curves!

¹(up to isomorphism of E')

Maths background #5: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!

Maths background #5: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/\mathbb{F}_q is <u>supersingular</u> if $p \mid (q + 1 - \#E(\mathbb{F}_q))$. We care about the cases $\#E(\mathbb{F}_p) = p + 1$ and $\#E(\mathbb{F}_{p^2}) = (p + 1)^2$. \rightsquigarrow easy way to control the group structure by choosing p!

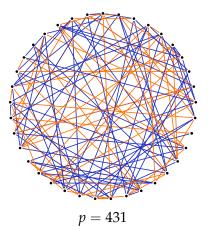
Our supersingular isogeny graph over \mathbb{F}_{p^2} will consist of:

 vertices given by supersingular elliptic curves (up to isomorphism),

• edges given by equivalence classes¹ of 2 and 3-isogenies, both defined over \mathbb{F}_{p^2} .

¹Two isogenies $\varphi \colon E \to E'$ and $\psi \colon E \to E''$ are identified if $\psi = \iota \circ \varphi$ for some isomorphism $\iota \colon E' \to E''$.

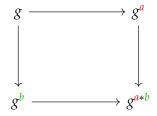
The isogeny graph looks like this:

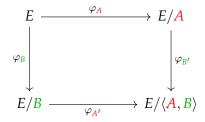


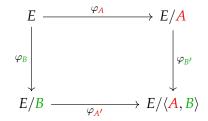
Now: SIDH

Supersingular Isogeny Diffie-Hellman

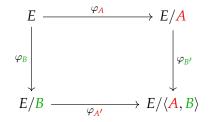
Diffie-Hellman: High-level view



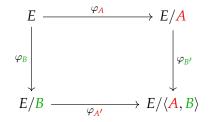




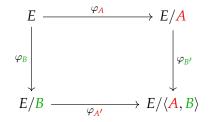
► Alice & Bob pick secret subgroups *A* and *B* of *E*.



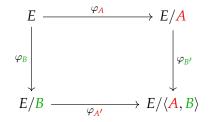
- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A : E \to E/A$; Bob computes $\varphi_B : E \to E/B$.
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)



- ► Alice & Bob pick secret subgroups *A* and *B* of *E*.
- Alice computes $\varphi_A \colon E \to E/A$; Bob computes $\varphi_B \colon E \to E/B$.
- ► Alice and Bob transmit the values *E*/*A* and *E*/*B*.
- Alice <u>somehow</u> obtains $A' := \varphi_B(A)$. (Similar for Bob.)
- ► They both compute the shared secret $(E/B)/A' \cong E/\langle A, B \rangle \cong (E/A)/B'.$

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

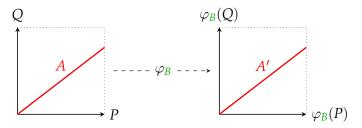
Alice knows only A, Bob knows only φ_B . Hm.

SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!

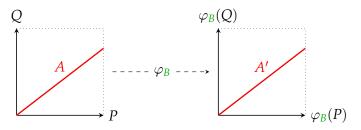


SIDH's auxiliary points

Previous slide: "Alice <u>somehow</u> obtains $A' := \varphi_B(A)$."

Alice knows only A, Bob knows only φ_B . Hm.

<u>Solution</u>: φ_B is a group homomorphism!



- Alice picks *A* as $\langle P + [a]Q \rangle$ for fixed public $P, Q \in E$.
- Bob includes $\varphi_B(P)$ and $\varphi_B(Q)$ in his public key.
- \implies Now Alice can compute A' as $\langle \varphi_B(P) + [a] \varphi_B(Q) \rangle$!

SIDH in one slide

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$	$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle$ s := j((E/B)/A')	$B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$

Break it by: given public info, find secret key– φ_A or just *A*.

Torsion-point attacks on SIDH

Break it by:

Given

- ► supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A : E_0 \to E_A$, and
- the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

Torsion-point attacks on SIDH

Break it by:

Given

- ► supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret 2^n -degree isogeny $\varphi_A : E_0 \to E_A$, and
- the action of φ_A on the 3^m -torsion of E_0 ,

find the secret key recover φ_A .

- 2016 Galbraith, Petit, Shani, Ti: knowledge of $End(E_0)$ and $End(E_A)$ is sufficient to efficiently break it.
- 2017 Petit: If $E_0 : y^2 = x^3 + x$ and $3^m > 2^{4n} > p^4$, then we can construct non-scalar $\theta \in \text{End}(E_A)$ and efficiently break it.

In SIDH, $3^m \approx 2^n \approx \sqrt{p}$.

Torsion-point attacks on SIDH

Break it by:

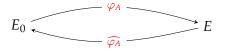
Given

- ► supersingular public elliptic curves E_0/\mathbb{F}_{p^2} and E_A/\mathbb{F}_{p^2} connected by a secret *D*-degree isogeny $\varphi_A : E_0 \to E_A$, and
- the action of φ_A on the *T*-torsion of E_0 ,

find the secret key recover φ_A .

- 2016 Galbraith, Petit, Shani, Ti: knowledge of $End(E_0)$ and $End(E_A)$ is sufficient to efficiently break it.
- 2017 Petit: If $E_0 : y^2 = x^3 + x$ and $T > D^4 > p^4$, then we can construct non-scalar $\theta \in \text{End}(E_A)$ and efficiently break it.

In SIDH, $T \approx \mathbf{D} \approx \sqrt{p}$.



From torsion points to endomorphisms $\frac{1}{2}$

The case of E_0 : $y^2 = x^3 + x$ and $T > D^4 > p^4$: finding the secret isogeny φ_A of degree *D*.

• We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).

The case of $E_0: y^2 = x^3 + x$ and $T > D^4 > p^4$: finding the secret isogeny φ_A of degree *D*.

• We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.
- If there exist ι , n such that $\deg(\theta) = T$, then can completely determine θ , and φ_A .

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.
- If there exist ι, n, ϵ such that $\deg(\theta) = \epsilon T$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.
- If there exist ι, n, ϵ such that $\deg(\theta) = \epsilon T$, then can completely determine θ , and φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- ► We can heuristically do this for polynomially small ε when T > D⁴ > p⁴.

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.
- If there exist *ι*, *n*, *ϵ* such that deg(θ) = *ϵ*T², then can completely determine θ, and φ_A, in time O(√ϵ · polylog(p)).
- ► We can heuristically do this for polynomially small *ϵ* when *T* > *D*² > *p*².

- We can choose $\iota \in \operatorname{End}(E_0)$ (for simplicity: of trace zero).
- Know the action of φ_A (and $\widehat{\varphi_A}$) on the *T*-torsion.
- Know: $\deg(\theta) = D^2 \deg(\iota) + n^2$.
- If there exist *ι*, *n*, *ϵ* such that deg(θ) = *ϵ*T², then can completely determine θ, and φ_A, in time O(√*ϵ* · polylog(*p*)).
- We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.

Know:

•
$$\epsilon T^2 = \deg(\theta) = D^2 \deg(\iota) + n^2$$
.

Know:

•
$$\epsilon T^2 = \deg(\theta) = D^2 \deg(\iota) + n^2$$
.

► $\iota \in \operatorname{End}(E_0)$ and $E_0 : y^2 = x^3 + x \rightsquigarrow \operatorname{deg}(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Know:

•
$$\epsilon T^2 = \deg(\theta) = D^2 \deg(\iota) + n^2$$
.

► $\iota \in \operatorname{End}(E_0)$ and $E_0: y^2 = x^3 + x \rightsquigarrow \operatorname{deg}(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Algorithm is in 2 parts:

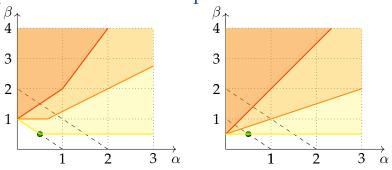
1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that $D^2(pa^2 + pb^2 + c^2) + n^2 = \epsilon T^2$.

Know:

- $\blacktriangleright \ \epsilon T^2 = \deg(\theta) = D^2 \deg(\iota) + n^2.$
- ► $\iota \in \operatorname{End}(E_0)$ and $E_0: y^2 = x^3 + x \rightsquigarrow \operatorname{deg}(\iota) = pa^2 + pb^2 + c^2$ (modulo details)

Algorithm is in 2 parts:

- 1. Find $a, b, c, n, \epsilon \in \mathbb{Z}$ with ϵ small such that $D^2(pa^2 + pb^2 + c^2) + n^2 = \epsilon T^2$.
- 2. Reconstruct $\iota \in \text{End}(E_0)$ with degree $pa^2 + pb^2 + c^2$ and use that to compute φ_A .



- $\blacktriangleright D \approx p^{\alpha}, T \approx p^{\beta}.$
- ► Below 1-1 dotted line: attacks SIDH group key exchange.
- ▶ Below 2-2 dotted line: attacks B-SIDH.¹
- Polynomial-time attack, improved classical attack, improvemed quantum attack, SIDH.
- ► Left: our results. Right: your results, if...

¹https://eprint.iacr.org/2019/1145.pdf

The equation of death

Open question:

For $\sqrt{p} \approx D \approx T$, and *p* large, find *a*, *b*, *c*, *n*, $\epsilon \in \mathbb{Z}$ with $\epsilon \approx \sqrt{D^3 p}/T$ such that $D^2(pa^2 + pb^2 + c^2) + n^2 = \epsilon T^2$ in time polynomial in $\log(p)$.

The case of $E_0: y^2 = x^3 + x$ finding the secret isogeny φ_A of degree *D*.

- Find φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- Find φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T > D^2 > p^2$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- Find φ_A , in time $O(\sqrt{\epsilon} \cdot \operatorname{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T > D^2$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, $\epsilon \geq \sqrt{D^3 p}/T$.

- Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T > D^2$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1/8}$.

- Find φ_A , in time $O(\sqrt{\epsilon} \cdot \text{polylog}(p))$.
- We can heuristically do this for polynomially small ϵ when $T > D^2$.
- For $T \approx D \approx \sqrt{p}$, like in SIDH, we can do this in time $p^{1/8}$.
- This is a square-root improvement over the previous best known attack.

SIDH is not broken

- There are many such specially constructed curves allowing for an attack.
- If we could construct a short path from a weak curve to $y^2 = x^3 + x$, we could attack SIDH.
- Probably, such a short path does not exist.
- Working this out is further work.

Thank you!

https://arxiv.org/abs/2005.14681