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What is this all about?
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Diffie–Hellman key exchange ’76

Public parameters:
I a finite group G (traditionally F∗p , today also elliptic curves)
I an element g ∈ G of prime order p

Alice public Bob

a random←−−− {0...p−1} b random←−−− {0...p−1}

ga gb

s := (gb)a s := (ga)b

Fundamental reason this works: ·a and ·b are commutative!

BROKEN!
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Quantum cryptoapocalypse

I Diffie-Hellman relies on the Discrete Logarithm Problem
being hard.

I Read: taking (discrete) logarithms should be much slower
than exponentiating.

I Shor’s quantum algorithm solves the discrete logarithm
problem in polynomial time.

I Read: with access to a quantum computer, taking discrete
logarithms is about as fast as exponentiation.

I Quantum computers that are sufficiently large and stable
do not yet exist (probably).

I But they are likely to be only a few years away...
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Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Stand back!

We’re going to do maths.
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Maths background #1: Elliptic curves (nodes)

An elliptic curve (modulo details) is given by an equation

E : y2 = x3 + ax + b.

A point on E is a solution to this equation or the ‘fake’ point∞.

E is an abelian group: we can ‘add’ points.
I The neutral element is∞.
I The inverse of (x, y) is (x,−y).
I The sum of (x1, y1) and (x2, y2) is

(
λ2 − x1 − x2, λ(2x1 + x2 − λ2)− y1

)
where λ =

y2−y1
x2−x1

if x1 6= x2 and λ =
3x2

1+a
2y1

otherwise.
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Maths background #2: Isogenies (edges)

An isogeny of elliptic curves is a non-zero map E→ E′ that is:
I given by rational functions.
I a group homomorphism.

The degree of a separable∗ isogeny is the size of its kernel.

An endomorphism of E is an isogeny E→ E, or the zero map.
The ring of endomorphisms of E is denoted by End(E).

Each isogeny ϕ : E→ E′ has a unique dual isogeny ϕ̂ : E′ → E
characterized by ϕ̂ ◦ ϕ = ϕ ◦ ϕ̂ = [degϕ].
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Maths background #3: Fields of definition

Until now: Everything over the algebraic closure.
For arithmetic, we need to know which fields objects live in.

An elliptic curve/point/isogeny is defined over k
if the coefficients of its equation/formula lie in k.

For E defined over k, let E(k) be the points of E defined over k.
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Maths background #4: Isogenies and kernels

For any finite subgroup G of E, there exists a unique1

separable isogeny ϕG : E→ E′ with kernel G.

The curve E′ is denoted by E/G. (cf. quotient groups)

If G is defined over k, then ϕG and E/G are also defined over k.

Vélu ’71:
Formulas for computing E/G and evaluating ϕG at a point.

Complexity: Θ(#G)  only suitable for small degrees.

Vélu operates in the field where the points in G live.
 need to make sure extensions stay small for desired #G
 this is why we use supersingular curves!

1(up to isomorphism of E′)
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Maths background #5: Supersingular isogeny graphs

Let p be a prime and q a power of p.

An elliptic curve E/Fq is supersingular if p | (q + 1−#E(Fq)).
We care about the cases #E(Fp) = p + 1 and #E(Fp2) = (p + 1)2.
 easy way to control the group structure by choosing p!

Our supersingular isogeny graph over Fp2 will consist of:
I vertices given by supersingular elliptic curves (up to

isomorphism),
I edges given by equivalence classes1 of 2 and 3-isogenies,

both defined over Fp2 .

1Two isogenies ϕ : E→ E′ and ψ : E→ E′′ are identified if ψ = ι ◦ ϕ for
some isomorphism ι : E′ → E′′.
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Graph-walking Diffie-Hellman?

The isogeny graph looks like this:

p = 431
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Now:

SIDH
Supersingular Isogeny Diffie–Hellman
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Diffie-Hellman: High-level view

g ga

gb ga∗b

I Alice & Bob pick secret subgroups A and B of E.
I Alice computes ϕA : E→ E/A; Bob computes ϕB : E→ E/B.
I Alice and Bob transmit the values E/A and E/B.
I Alice somehow obtains A′ := ϕB(A). (Similar for Bob.)

I They both compute the shared secret
(E/B)/A′ ∼= E/〈A,B〉 ∼= (E/A)/B′.
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SIDH’s auxiliary points
Previous slide: “Alice somehow obtains A′ := ϕB(A).”

Alice knows only A, Bob knows only ϕB. Hm.

Solution: ϕB is a group homomorphism!

P

Q

A

ϕB(P)

ϕB(Q)

A′ϕB

I Alice picks A as 〈P + [a]Q〉 for fixed public P,Q ∈ E.
I Bob includes ϕB(P) and ϕB(Q) in his public key.

=⇒ Now Alice can compute A′ as 〈ϕB(P) + [a]ϕB(Q)〉!
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SIDH in one slide
Public parameters:

I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′

) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉
s := j

(
(E/A)/B′

)
Break it by: given public info, find secret key–ϕA or just A.
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Torsion-point attacks on SIDH

Break it by:

Given
I supersingular public elliptic curves E0/Fp2 and EA/Fp2

connected by a secret 2n-degree isogeny ϕA : E0 → EA,
and

I the action of ϕA on the 3m-torsion of E0,
find the secret key recover ϕA.

2016 Galbraith, Petit, Shani, Ti: knowledge of End(E0) and
End(EA) is sufficient to efficiently break it.

2017 Petit: If E0 : y2 = x3 + x and 3m > 24n > p4, then we can
construct non-scalar θ ∈ End(EA) and efficiently break it.

In SIDH, 3m ≈ 2n ≈ √p.
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Torsion-point attacks on SIDH

Break it by:

Given
I supersingular public elliptic curves E0/Fp2 and EA/Fp2

connected by a secret D-degree isogeny ϕA : E0 → EA, and
I the action of ϕA on the T-torsion of E0,

find the secret key recover ϕA.

2016 Galbraith, Petit, Shani, Ti: knowledge of End(E0) and
End(EA) is sufficient to efficiently break it.

2017 Petit: If E0 : y2 = x3 + x and T > D4 > p4, then we can
construct non-scalar θ ∈ End(EA) and efficiently break it.
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17 / 23



From torsion points to endomorphisms
The case of E0 : y2 = x3 + x and T > D4 > p4:
finding the secret isogeny ϕA of degree D.

E0 E
ϕ̂A

ϕA

ι θ = ϕA ◦ ι ◦ ϕ̂A (+[n])

I We can choose ι ∈ End(E0) (for simplicity: of trace zero).
I Know the action of ϕA (and ϕ̂A) on the T-torsion.
I Know: deg(θ) = D2 deg(ι) + n2.

I If there exist ι,n

, ε

such that deg(θ) =

ε

T

2

, then can
completely determine θ, and ϕA.

in time
O(
√
ε · polylog(p)).

I We can heuristically do this for polynomially small ε when
T > D4 > p4.
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in time
O(
√
ε · polylog(p)).

I We can heuristically do this for polynomially small ε when
T > D4 > p4.
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From torsion points to endomorphisms
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Improvements on torsion-point attacks

Know:
I εT2 = deg(θ) = D2 deg(ι) + n2.

I ι ∈ End(E0) and E0 : y2 = x3 + x deg(ι) = pa2 + pb2 + c2

(modulo details)

Algorithm is in 2 parts:
1. Find a, b, c,n, ε ∈ Z with ε small such that

D2(pa2 + pb2 + c2) + n2 = εT2.
2. Reconstruct ι ∈ End(E0) with degree pa2 + pb2 + c2 and use

that to compute ϕA.
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Improvements on torsion-point attacks

1 2 3 α

1

2

3

4
β

1 2 3 α

1

2

3

4
β

1
I D ≈ pα, T ≈ pβ .
I Below 1-1 dotted line: attacks SIDH group key exchange.
I Below 2-2 dotted line: attacks B-SIDH.1
I Polynomial-time attack, improved classical attack,

improvemed quantum attack, SIDH.
I Left: our results. Right: your results, if...

1
https://eprint.iacr.org/2019/1145.pdf
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The equation of death

Open question:

For √p ≈ D ≈ T, and p large,
find a, b, c, n, ε ∈ Z with ε ≈

√
D3p/T such that

D2(pa2 + pb2 + c2) + n2 = εT2

in time polynomial in log(p).
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From torsion points to endomorphisms

The case of E0 : y2 = x3 + x
finding the secret isogeny ϕA of degree D.

E0 E
ϕ̂A

ϕA

ι θ = ϕA ◦ ι ◦ ϕ̂A (+[n])

I Find ϕA, in time O(
√
ε · polylog(p)).

I We can heuristically do this for polynomially small ε when
T > D2 > p2.

I For T ≈ D ≈ √p, like in SIDH, ε ≥
√

D3p/T.

I This is a square-root improvement over the previous best
known attack.
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SIDH is not broken

I There are many such specially constructed curves allowing
for an attack.

I If we could construct a short path from a weak curve to
y2 = x3 + x, we could attack SIDH.

I Probably, such a short path does not exist.
I Working this out is further work.
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Thank you!

https://arxiv.org/abs/2005.14681
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