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1 Isogeny graphs of elliptic curves

Definition. Suppose that E and E′ are elliptic curves over a field k. An isogeny
φ : E → E′ is a surjective morphism with finite kernel that sends the identity
to the identity.

Definition. Suppose that φ : E → E′ is an isogeny of elliptic curves over a
field k. This induces an injective morphism of function fields

k(E′) −→ k(E).

We define the degree of φ to be

deg(φ) = [k(E) : k(E′)].

If deg(φ) = `, then we call φ an `-isogeny.

Remark. If φ : E → E′ is a separable isogeny (i.e. if the field extension is
separable) then the degree of the isogeny is just the size of the kernel.

Remark. An `-isogeny φ : E → E′ has a dual `-isogeny φ∨ : E′ → E′ such
that

φ ◦ φ∨ = φ∨ ◦ φ = [`],

where [`] denotes the multiplication-by-` morphism.

Definition. An `-isogeny graph of elliptic curves as an undirected graph for
which each vertex represents a j-invariant (this is an isomorphism invariant) of
an elliptic curve over a field k, and an edge between j(E) and j(E′) represents
an `-isogeny E → E′ defined over k and its dual isogeny E′ → E.
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Definition. An `-volcano is an undirected connected graph whose vertices are
partitioned into one or more levels V0, . . . , Vd such that the following hold:

1. The subgraph on level V0 is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbour in level Vi−1, and
this accounts for every edge not on the surface.

3. If d 6= 0, for i < d, each vertex in Vi has degree `+ 1.

Example. Here is a 2-volcano with d = 2:

Theorem (Kohel ’96). Let E/Fq be an ordinary elliptic curve with j(E) 6=
0, 1728. Then the connected component of the `-isogeny graph containing j(E)
is a `-volcano.

Remark. The depth is given by max{r ∈ Z : `r|[OK : Z[π]]}, where π is the
q-power Frobenius endomorphism of E and K = Q(π). So the depth is as easy
to compute as the Frobenius endomorphism. (We’ll come back to this later).
The structure of level V0 and the number of connected components are also easy
to compute.

Now with a simple path walking algorithm we can determine if j(E) and
j(E′) are in the same connected component of the isogeny graph, hence deter-
mine if they are isogenous, and if they are, determine the degree of the isogeny
(or at least of one of the isogenies).

In fact, we can do even more, we can determine the endomorphism ring of
an elliptic curve by using a path walking algorithm to determine its position
in the `-volcano. The conditions on the elliptic curve E ensure that End(E) is
an order in an imaginary quadratic number field Q(π), where π is the q-power
Frobenius morphism on E. Locally at `, the vertices occurring in level Vi have
endomorphism ring `iOK , so to determine the endomorphism ring of a given
elliptic curve (satisfying the conditions of Kohel’s theorem), we just have to
determine the endomorphism algebra K, list the primes `1, . . . , `r dividing the
index [OK : Z[π]], and do a path walking algorithm to determine the depth of
the vertex in the `1, . . . , `r-volcanoes.
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2 Isogeny graphs of abelian varieties

We are able to define a discrete logarithm on elliptic curves and classify isogenies
of elliptic curves using isogeny graphs largely due to one property: that there
exists a group law. Recall that an elliptic curve (for odd characteristic) is defined
by a polynomial

y2 = f(x),

where deg(f) = 3. One could ask, what happens if deg(f) > 3? Or what about
other algebraic curves? One of the reasons that we so often stick to such a
special class of algebraic curves is because of the simple group law. But all is
not lost for other algebraic curves: although there is no known group law on the
curves themselves, to each algebraic curve C we can associate an abelian variety
(on which there exists a group law), called the Jacobian of C, written J(C), or
Jac(C). In fact, we can do even better, we can assume that the Jacobian is a
principally polarised abelian variety - which for all purposes of this talk means
‘nice’. Furthermore, if C is defined over k, then

C(k) ⊆ Jac(C)(k),

so we can study the k-rational points of C by studying the points on the Jaco-
bian, where we have a group law to help us.

Recall that the conditions on the elliptic curves to which Kohel’s theorem
can be applied ensured that the endomorphism algebra would be an imaginary
quadratic field generated by the Frobenius. We will need a natural generalisation
of this to abelian varieties.

Definition. A CM-field K is a totally imaginary quadratic extension of a totally
real number field K0.

Examples. • K = Q(
√
−2) is a CM-field with K0 = Q.

• K = Q(
√
−3 +

√
2) is a CM-field with K0 = Q(

√
2).

Definition. An abelian variety A of dimension g has CM by a CM-field K of
degree 2g over Q if the endomorphism algebra End(A) ⊗ Q = K. If K0 is the
maximal totally real subfield of K, we say that A RM by K0.

A simple ordinary abelian variety defined over Fq is CM, i.e., there exists
a CM-field K of degree 2g over Q such that A has CM by K. This is again a
consequence of the existence Frobenius endomorphism π on A and its dual π.
From now on, unless stated otherwise, we will assume that A has CM by K,
and that OK0

⊆ End(A) (i.e. A has maximal real multiplication by K0).

Definition. A morphism of abelian varieties is an isogeny if it preserves the
identity, is surjective, and has finite kernel.

The generalisation of an `-isogeny to higher dimension that we use is quite
complicated, so we do not a precise definition. The interested reader can find
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the definition in the upcoming thesis of the author [Mar]. Recall that for elliptic
curves, given an isogeny E → E′, there was a dual isogeny E′ → E. What we
did not mention in the case of elliptic curves was that, to observe that the dual
isogeny is a morphism E′ → E, we used that an elliptic curve is isomorphic
to its dual. For general abelian varieties this is not true, but abelian varieties
that are Jacobians of curves are ‘principally polarisable’, which for all intents
and purposes of this talk means that there exists a ‘nice’ isomorphism A→ A∨.
We again associate a prime to the isogeny, but now a prime ideal in OK0

-
we study ‘µ-isogenies’ of principally polarised ordinary abelian varieties, where
µ is a totally positive element of OK0

which generates a prime ideal in K0.
A morphism φ : A → A′ of principally polarised ordinary abelian varieties is
‘defined’ to be a µ-isogeny if, up to the polarisations A ∼= A∨ and A′ ∼= (A′)∨,
we have that

φ∨ ◦ φ = [µ],

where [µ] denotes the multiplication-by-µ map on A, and φ preserves the RM
structure. Note in particular that the degree of φ is NormK0/Q(µ), hence if φ is
separable and the norm of µ is prime, then φ has cyclic kernel, again mimicking
the genus 1 case.

Definition. A µ-isogeny graph of p.p.o.a.vs is an undirected graph for which
each vertex represents a p.p.o.a.v. over a field Fq up to (polarisation and RM
preserving) isomorphism, and an edge between A and A′ represents a µ-isogeny
A → A′ defined over Fq together with its dual isogeny (A′)∨ → A∨ (again, up
to isomorphism).

Let I be the graph with one vertex and no edges, let R1 be a 1-cycle with
one edge of weight 1

2 , let R2 be 2 vertices joined by a single edge, and let Cn be
a cycle of length n.

Theorem (M. ’17). Let A/Fq be a principally polarised ordinary abelian variety
with maximal real multiplication by K0 and suppose that the only roots of unity
in End(A) ⊗ Q are ±1. Then the connected component of the µ-isogeny graph
containing A is a NormK0/Q(µ)-volcano with V0 ∈ {I,R1, R2, Cn}.

Remark. As before, the subgraph V0 is easy to compute, as is the depth of the
volcano:

d = max
r∈Z
{µrOK ⊆ (OK0

[π, π] : OK).

Note in particular that this formula for the depth shows that for all but finitely
many µ, the depth is 0, that is, the connected component is exactly V0. As
before, the levels of the volcano correspond to different endomorphism rings
locally at µ. That is, locally at µ, the vertices A in Vi have endomorphism ring
µiOK .

Remark. A similar theorem (but not with µ-isogenies) was given for the genus
2 case by Ionica and Thomé in [IT]. Independently, Brooks, Jetchev, and
Wesolowski proved a similar statement (in arbitrary dimension) in [BJW].
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3 The Discrete Logarithm Problem for Genus 3
Curves

Many cryptosystems are based on the Diffie-Hellman key exchange. Let G be
a large commutative group, and suppose that Alice and Bob want to compute
a shared secret element of this group. To do this, Alice chooses a secret integer
a ∈ Z and Bob chooses a secret integer b ∈ Z, and Alice (or Bob, or the NSA,
or you) chooses and publishes an element g of G of large order. Alice then
computes ag and sends it to Bob, and Bob computes bg and sends in to Alice.
Alice and Bob can then both compute their shared secret abg.

The security of this cryptosystem relies on the hardness of the so-called
Discrete Logarithm Problem: given ng and g ∈ G, compute n ∈ Z. The groups
used should be sufficiently large so that enumeration is not computationally
feasible, but even then there are some deeper mathematical tricks that can be
used on some groups to solve the problem in sub-exponential time. To get an
idea of how hard the discrete logarithm problem is for some groups, consider
the following examples:

Examples. • Let G = E(Fq) be the group of Fq-rational points on a ‘suffi-
ciently generic’ elliptic curve defined over Fq. The best known algorithm
for the Discrete Logarithm Problem on G has complexity O(

√
q).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficiently generic’ genus 2 curve defined over Fq. The best known
algorithm for the Discrete Logarithm Problem on G has complexity O(q).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficiently generic’ hyperelliptic genus 3 curve over Fq. The best
known algorithm for the Discrete Logarithm Problem on G has complexity
O(q3/2).

• Let G = J (C)(Fq) be the group of Fq-rational points on the Jacobian
of a ‘sufficienly generis’ plane quartic genus 3 curve over Fq. The best
known algorithm, due to Diem and Smith, for the Discrete Logarithm on
G has complexity O(q). In this case ‘the Discrete Logarithm Problem is
broken’, by which we mean that for a high enough security level, we have
to increase the size of the finite field so much that the computations on the
curve become too inefficient to be competitive with other options (such as
genus 1 and 2 curves).

Under heuristic assumptions, in joint work in progress with Jetchev, Milio,
Vuille, and Wesolawski, we give an algorithm that breaks the discrete logarithm
for almost all genus 3 curves. That is, we give an algorithm that, on a sufficiently
generic genus 3 curve C over Fq, given P and nP in J (C)(Fq), computes n in
time O(q). The strategy is as follows:

• If C is hyperelliptic, use the algorithm of Diem and Smith. Else, construct
a plane quartic C ′ and an isogeny φ : J (C) → J (C ′). (The existence of
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such an isogeny for a generic curve is part of the heuristic assumptions,
at least for now).

• Compute φ(nP ) = nφ(P ).

• Compute n in time O(q) using the algorithm of Diem and Smith.

Our contribution to this is the construction in (1), which we now address.

4 Constructing an isogeny to the Jacobian of a
plane quartic curve

Recall that we have been studying isogeny graphs of principally polarised ordi-
nary abelian varieties. We will need a few facts about 3-dimensional principally
polarised abelian varieties over finite fields.

1. By Torelli’s theorem, every principally polarised abelian variety is the
Jacobian of a genus 3 curve.

2. Every genus 3 curve can be written as either a hyperelliptic curve or a
plane quartic curve.

3. Abelian varieties with End(A)⊗Q = K, where K is a CM-field, are generic
in the class of all principally polarised abelian 3-folds over Fq.

4. Over Fq, up to Fq-isomorphism there are q6 + 1 plane quartics (this result
is due to Bergstrom).

5. Over Fq, up to Fq-isomorphism there are 2q5 +O(q4) hyperelliptic curves
of genus 3.

In particular, in is not unreasonable to assume that a generic isogeny class
of principally polarised abelian 3-folds contains a high proportion of Jacobians
of plane quartic curves. We assume this, and additionally we assume that the
plane quartics are randomly-distributed within the isogeny class. We hope to
remove these assumptions, or at least verify them computationally, but this is
work in progress.

The idea is to compute an isogeny from the starting curve to a sufficiently
random point in the isogeny graph, so that under our heuristic assumptions,
there will exist many low-degree isogenies to plane quartic curves.

Before getting into this, we need to study isogeny graphs a little further.
Recall that the Volcano Theorem gave the structure of µ-isogeny graphs for
principally polarised ordinary abelian varieties with OK0

⊆ End(A). The com-
position of all the µ-isogeny graphs for all µ gives a subgraph of the whole
graph, specifically the subgraph with vertices with maximal real multiplica-
tion. To reach all the elements of the isogeny class, we have to additionally use
(`, `, `)-isogenies.
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Definition. An (`, `, `)-isogeny f : A→ A′ is an isogeny of abelian 3-folds with
maximal isotropic kernel of size `3.

Examples. • If ` does not split in K0, then an `-isogeny is a (`, `, `)-isogeny.

• If ` splits completely in K0 as I1I2I3 = `OK0
and each Ii is principally

generated by a totally positive element µi, then every (`, `, `)-isogeny be-
tween abelian varities with maximal real multiplication is the composition
of a µ1−, a µ2−, and a µ3−isogeny.

Definition. An (`, `, `)-isogeny graph of p.p.o.a.vs is an undirected graph for
which each vertex represents a p.p.o.a.v over a field Fq up to (polarisation
preserving) isormophism, and an edge between A and Ab′ represents a (`, `, `)-
isogeny A → A′ defined over Fq together with its dual isogeny (A′)∨ → A∨

(again, up to isomorphism).

The connected components of an (`, `, `)-isogeny graph are not as beautiful
as those of µ-isogeny graphs, but we can still say something about the structure.

We partition the graph into RM layers. We define the ith layer Li of the
(`, `, `)-isogeny graph to be the subgraph containing the vertices A for which

[OK0 : End(A) ∩K0] = `i.

There are r + 1 layers, where

r = max{i ∈ Z : `i|[OK0
: Z[π + π]]},

and for all but finitely many primes `, we have that r = 0.

Lemma. Every principally polarised ordinary abelian variety A with End(A)⊗
Q = K (where K is a CM-field) is isogenous to a principally polarised ordinary
abelian variety A′ with End(A′) = OK via a composition of (`, `, `)-isogenies
and µ-isogenies.

Lemma. For i > 0, for each vertex in Li, there exists an (`, `, `)-isogeny landing
in Li−1. This isogeny is the ‘RM-ascending’ isogeny.

These lemmas yield the following algorithm:

Algorithm 1.
INPUT: A hyperelliptic genus 3 curve C/Fq with Frobenius π and End(J (C))⊗
Q = Q(π) such that Q(π) is a CM-field K.
OUTPUT: A plane quartic curve curveD/Fq, and an isogeny φ : J (C)→ J (D).

1. List L = (`1, . . . , `n) such that h > 0 in the `i-isogeny graph, and M =
(µ1, . . . , µm) such that d > 0 in the µi-isogeny graph.

2. For ` ∈ L, walk to L0 in the (`, `, `)-isogeny graph by computing the
unique RM-ascending (`, `, `)-isogeny.

3. For µ ∈M , walk to the subgraph V0 of the µ-isogeny graph.
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4. For ‘enough’ µ 6∈M , do a random walk on the cycle for ‘enough’ steps.

5. Walk randomly in the (`, `, `)-isogeny graph for different ` and check at
each step if you land on the Jacobian of a plane quartic curve D. If true,
output D and the path that was taken to D from C.

Remarks. 1. For Step 1, one only needs to be able to compute the endo-
morphism algebra and the Frobenius as an algebraic integer.

2. Vuille and Milio are currently working on an implementation of (`, `, `)-
isogenies and µ-isogenies, with which we can ‘walk’ in the (`, `, `)- and
µ-isogeny graphs.

3. The precise definitions of ‘enough’ in Step 4 is work in progress, and will
come from a more precise formulation of the heuristic assumptions.

4. Termination relies on the heuristic assumptions.

5 Application to the Discrete Logarithm Prob-
lem for Elliptic Curves

Joux and Vitse [?] constructed explicit covering maps

π : H/Fq → E/Fq3

from hyperelliptic curves of genus 3 over Fq to elliptic curves over Fq3 for several
families of elliptic curves.

Suppose that E/Fq3 has a hyperelliptic cover π : H → E. Using Algorithm 1,
we can efficiently construct a plane quartic curve C and an isogeny φ : J (C)→
J (H). Via π and φ we can translate the Discrete Logarithm problem on E/Fq3

to the Discrete Logarithm Problem on J (C), where it can be solved in time
O(q) < O((q3)1/2) using the Diem-Smith attack, hence the Discrete Logarithm
Problem would be broken for all the elliptic curves in the families detailed by
Joux and Vitse.

In future work, we hope to construct more such families of elliptic curves.
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[IT] Ionica and Thomé, Isogeny graphs with maximal real multiplication, https:
//eprint.iacr.org/2014/230 (2014)

[Mar] Martindale, Isogeny Graphs, Modular Polynomials, and Applications,
PhD thesis (in preparation), available at www.martindale.info (2017)

[Mil] Milio, A quasi-linear time algorithm for computing modular polynomials
in dimension 2, https://arxiv.org/abs/1411.0409 (2014)

[Oor] Oort, Abelian Varieties over Finite Fields, http://www.math.nyu.edu/

~tschinke/books/finite-fields/final/05_oort.pdf (2007).

[Sch] Schoof, Counting points on elliptic curves over finite fields, Journal de
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