
CSIDH: An Efficient Post-Quantum
Commutative Group Action

Chloe Martindale
csidh.isogeny.org

University of South Florida, 26th April 2019

1 / 33

csidh.isogeny.org

The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.

eg. WhatsApp messages; internet banking apps; sites using ‘https’.
I What is the discrete logarithm problem?

2 / 33

The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

I What is the discrete logarithm problem?

2 / 33

The Discrete Logarithm Problem

I Most of your online data is encrypted via cryptographic
protocols that rely on the discrete logarithm problem.
eg. WhatsApp messages; internet banking apps; sites using ‘https’.

I What is the discrete logarithm problem?

2 / 33

The Discrete Logarithm Problem

I Let G be a group with group operation ∗.

I The discrete logarithm problem (DLP): given g ∈ G and
g ∗ · · · ∗ g︸ ︷︷ ︸

n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.
DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 33

The Discrete Logarithm Problem

I Let G be a group with group operation ∗.

I The discrete logarithm problem (DLP): given g ∈ G and
g ∗ · · · ∗ g︸ ︷︷ ︸

n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.

DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 33

The Discrete Logarithm Problem

I Let G be a group with group operation ∗.
I The discrete logarithm problem (DLP): given g ∈ G and

g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.

DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 33

The Discrete Logarithm Problem

I Let G be a group with group operation ∗.
I The discrete logarithm problem (DLP): given g ∈ G and

g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, find n.

Example: Let

G = (Z/23Z)− {0}
= {1 mod 23, 2 mod 23, 3 mod 23, . . . , 22 mod 23},

then G is a group with group operation ∗ given by multiplication.
DLP in (Z/23Z)− {0}: Given g mod 23 and gn mod 23, find n.

3 / 33

The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:

I Let n = 9; compute 59 mod 23.
I If 5n = 11 mod 23; compute n.

4 / 33

The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.

I If 5n = 11 mod 23; compute n.

4 / 33

The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.

I If 5n = 11 mod 23; compute n.

4 / 33

The Discrete Logarithm Problem

The DLP is hard when, given g ∈ G:
I Given n ∈ Z, computing g ∗ · · · ∗ g︸ ︷︷ ︸

n times

is fast. (eg. Polynomial time).

I Given g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, computing n is slow. (eg. Exponential time).

Example: Given g = 5 mod 23:
I Let n = 9; compute 59 mod 23.
I If 5n = 11 mod 23; compute n.

4 / 33

Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 33

Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 33

Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 33

Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 33

Square-and-multiply

Compute 59 mod 23.

·5
·5

·5

·5

·5

·5

·5

·5

·5

·5

·52

·52

·52

·52

·5

·54

·54

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

5 / 33

Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 33

Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 33

Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 33

Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 33

Square-and-multiply vs. solving DLP
I To compute 59 mod 23, compute:

5 · 58 = 5 · ((52)2)2 mod 23. (Fast).

I To compute n such that 5n ≡ 11 mod 23, check:

52 ≡ 2 6≡ 11 mod 23

53 ≡ 10 6≡ 11 mod 23

54 ≡ 4 6≡ 11 mod 23

55 ≡ 20 6≡ 11 mod 23

56 ≡ 8 6≡ 11 mod 23

57 ≡ 17 6≡ 11 mod 23

58 ≡ 16 6≡ 11 mod 23

59 ≡ 11 mod 23.

(Slow).
(There are smarter ways to do this in practise, but they’re still slow).

6 / 33

Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 33

Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 33

Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 33

Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 33

Application of DLP: Diffie-Hellman key exchange

Secret key: d

Shared secret: s = (gh)d

g ∈ G

Public key: gd

−−−−−−−−→

Public key: gh

←−−−−−−−−

Secret key: h

Shared secret: s = (gd)h

If DLP is hard for G, then computing the public keys and the
shared secret is fast for Diffie and Hellman, and computing the
secret values is slow for an adversary.

7 / 33

Applications of Diffie-Hellman key exchange

The Diffie-Hellman key exchange is a building block in:
I Digital signature schemes (used for example by some

online banking apps; secure websites).
I Encrypted messaging services (eg. WhatsApp).

8 / 33

Cryptapocalyse

9 / 33

Quantum cryptapocalyse

gn −→ −→ n

Shor’s algorithm quantumly computes n from gn and g in any
group in polynomial time. (About as fast as computing gn from
n and g).

 All applications of DLP are broken by quantum computers!

10 / 33

11 / 33

Quantum cryptapocalyse

Key Finding 10: Even if a quantum computer that can decrypt
current cryptographic ciphers is more than a decade off, the
hazard of such a machine is high enough – and the time frame
for transitioning to a new security protocol is sufficiently long
and uncertain – that prioritization of the development, stan-
dardization, and deployment of post-quantum cryptography
is critical for minimizing the chance of a potential security and
privacy disaster.

Report by the US National Academy of Sciences, see
http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

12 / 33

http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=25196

Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:

I Digital signature schemes (used for example by some
online banking apps; secure websites).

I Encrypted messaging services (eg. WhatsApp).

I We need a post-quantum Diffie-Hellman-style key
exchange.

13 / 33

Reminder: applications of Diffie-Hellman key
exchange

I The Diffie-Hellman key exchange (and hence DLP) is a
building block in:

I Digital signature schemes (used for example by some
online banking apps; secure websites).

I Encrypted messaging services (eg. WhatsApp).
I We need a post-quantum Diffie-Hellman-style key

exchange.

13 / 33

Square-and-multiply

Reminder: how to compute 59 mod 23.

·5

·58

50
51

52

53

54

55

56

57

58

59

510
511 512

513

514

515

516

517

518

519

520
521

14 / 33

Square-and-multiply

·5
·5

·5
·5
·5
·5
·5
·5

·5 ·5 ·5 ·5
·5
·5
·5
·5
·5

·5
·5

·5·5·5

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

·52

·52

·52

·52
·52 ·52

·52
·52

·52·52·52

50
52

54

56

58

510 512
514

516

518

520

·52

·52

·52

·52
·52 ·52

·52
·52

·52·52·52

51
53

55

57

59

511 513
515

517

519

521

·54

·54

·54

·54
·54 ·54

·54
·54

·54·54·54

50
54

58

512

516

520 52
56

510

514

518

·54

·54

·54

·54
·54 ·54

·54
·54

·54·54·54

51
55

59

513

517

521 53
57

511

515

519

·58

·58

·58

·58
·58 ·58

·58
·58

·58·58·58

50
58

516

52

510

518 54
512

520

56

514

·58

·58

·58

·58
·58 ·58

·58
·58

·58·58·58

51
59

517

53

511

519 55
513

521

57

515

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 33

Square-and-multiply

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
52

54

56

58

510 512
514

516

518

520 51
53

55

57

59

511 513
515

517

519

521

50
54

58

512

516

520 52
56

510

514

518 51
55

59

513

517

521 53
57

511

515

519 50
58

516

52

510

518 54
512

520

56

514 51
59

517

53

511

519 55
513

521

57

515

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 33

Square-and-multiply
50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 33

Square-and-multiply
50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

50
51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521 50

51

52

53

54

55

56

57

58

59

510
511 512 513

514

515

516

517

518

519
520521

Needed for Diffie-Hellman: Cycles are compatible–
[right, then left] = [left, then right], etc. (Else (5a)b 6= (5b)a).

15 / 33

Union of cycles: rapid mixing
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12

g13

g14

g15

g16

g17

g18

g19

g20
g21

Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.

16 / 33

Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12

g13

g14

g15

g16

g17

g18

g19

g20
g21

Post-quantum Diffie-Hellman: Nodes are now elliptic curves
and edges are isogenies.

16 / 33

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.
Edges: 3-, 5-, and 7-isogenies.

17 / 33

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.

Edges: 3-, 5-, and 7-isogenies.

17 / 33

Graphs of elliptic curves
E0E158

E410

E368

E404

E75

E144

E191

E174

E413

E379

E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9

E261

Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over Z/419Z.
Edges: 3-, 5-, and 7-isogenies.

17 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = 1:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = 0:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = −1:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = −2:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = −3:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = −3:

18 / 33

Interlude: supersingular elliptic curves and isogenies
Nodes: Supersingular elliptic curves EA : y2 = x3 + Ax2 + x over
F419.

I If equation EA is smooth (no self intersections or cusps) it
represents an elliptic curve.

I The set of Fp-rational solutions (x, y) to an elliptic curve
equation EA/Fp, together with a ‘point at infinity’ P∞,
forms a group with identity P∞, notated EA(Fp).

I An elliptic curve EA/Fp with p ≥ 5 such that
#EA(Fp) = p + 1 is supersingular.

A = −3:

18 / 33

Interlude: supersingular elliptic curves and isogenies

Edges: 3-, 5-, and 7-isogenies.
I An isogeny EA → EB is a non-zero morphism the preserves

P∞ (‘nice map’ given by rational maps).

I For ` 6= p (= 419 here), an `-isogeny f : EA → EB is an
isogeny with #ker(f) = `.

I Every `-isogeny f : EA → EB has a unique dual `-isogeny
f : EB → EA.

19 / 33

Interlude: supersingular elliptic curves and isogenies

Edges: 3-, 5-, and 7-isogenies.
I An isogeny EA → EB is a non-zero morphism the preserves

P∞ (‘nice map’ given by rational maps).
I For ` 6= p (= 419 here), an `-isogeny f : EA → EB is an

isogeny with #ker(f) = `.

I Every `-isogeny f : EA → EB has a unique dual `-isogeny
f : EB → EA.

19 / 33

Interlude: supersingular elliptic curves and isogenies

Edges: 3-, 5-, and 7-isogenies.
I An isogeny EA → EB is a non-zero morphism the preserves

P∞ (‘nice map’ given by rational maps).
I For ` 6= p (= 419 here), an `-isogeny f : EA → EB is an

isogeny with #ker(f) = `.
I Every `-isogeny f : EA → EB has a unique dual `-isogeny

f : EB → EA.

19 / 33

Graphs of elliptic curves

E0E158E410
E368

E404

E75

E144

E191

E174

E413

E379

E124
E199 E390 E29

E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
(...and its dual isogeny)

20 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+
↑
,−,+,−] [+

↑
,+,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−

↑
,+,−] [+,+

↑
,−,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+

↑
,−] [+,+,−

↑
,+]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−

↑
] [+,+,−,+

↑
]

21 / 33

Diffie-Hellman on isogeny graphs

Alice Bob
[+,−,+,−] [+,+,−,+]

21 / 33

A walkable graph

Important properties for our graph:

IP1 I The graph is a composition of compatible cycles.
IP2 I We can compute neighbours in given directions.

22 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G3:

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G5:

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G7:

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I In our example, these are
E0E158E410

E368

E404

E75

E144

E191

E174

E413

E379
E124

E199 E390 E29
E220

E295

E40

E6

E245

E228

E275

E344

E15

E51

E9
E261

G3∪G5∪G7:

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I Generally, the G` look something like

G3: G5:

I We want to make sure G` is just a cycle.

23 / 33

IP1: A composition of cycles

I The graph used in CSIDH is constructed as a composition
of graphs G` of `-isogenies.

I Generally, the G` look something like

G3: G5:

I We want to make sure G` is just a cycle.

23 / 33

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)

I The orientation of G` is mathematically well-defined
(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...

24 / 33

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)
I The orientation of G` is mathematically well-defined

(canonical way to compute the ‘left’ or ‘right’ isogeny).

I The cost grows with ` want small `.
I Generally needs big extension fields...

24 / 33

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)
I The orientation of G` is mathematically well-defined

(canonical way to compute the ‘left’ or ‘right’ isogeny).
I The cost grows with ` want small `.

I Generally needs big extension fields...

24 / 33

IP2: Compute neighbours in given directions

The edges of G` are `-isogenies.

(picture not to scale)

E51 : y2 = x3 + 51x2 + x E9 : y2 = x3 + 9x2 + x

(x, y)
(

97x3−183x2+x
x2−183x+97 , y · 133x3+154x2−5x+97

−x3+65x2+128x−133

)
I The orientation of G` is mathematically well-defined

(canonical way to compute the ‘left’ or ‘right’ isogeny).
I The cost grows with ` want small `.
I Generally needs big extension fields...

24 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.

I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.

I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.

I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.

I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.

I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.

I Computations need only Fp-arithmetic (because
`i|(p + 1)).

25 / 33

Solution

1. I Choose some small odd primes `1, . . . , `n.
I Make sure p = 4 · `1 · · · `n − 1 is prime.
I Fix the curve E0 : y2 = x3 + x over Fp.

2. I E0 is supersingular has p + 1 points.
I Let the nodes of G`i be those EA with p + 1 points.
I Then every G`i is a disjoint union of cycles.
I All G`i are compatible.
I Computations need only Fp-arithmetic (because

`i|(p + 1)).

25 / 33

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

26 / 33

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.

⇒ Tiny keys!

26 / 33

Representing nodes of the graph

Side effect of magic:

I Every node of G`i can be written as

EA : y2 = x3 + Ax2 + x.

⇒ Can compress every node to a single value A ∈ Fp.
⇒ Tiny keys!

26 / 33

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

27 / 33

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

27 / 33

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

27 / 33

Does any A work?

No.

I About
√p of all A ∈ Fp are valid keys.

I Public-key validation: Check that EA has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on EA and check [p + 1]P =∞.1

1This algorithm has a small chance of false positives, but we actually use a
variant that proves that EA has p + 1 points.

27 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman

I Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

I Smallest keys of all post-quantum key exchange proposals
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

28 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly

I Smallest keys of all post-quantum key exchange proposals
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

28 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange proposals

I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

28 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange proposals
I Competitive speed: ∼ 35 ms per operation

I Security is based on a well-studied mathematical problem
(no added extra structure that could weaken security)

28 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange proposals
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

28 / 33

Why CSIDH?

I Drop-in post-quantum replacement for Diffie-Hellman
I Non-interactive key exchange (full public-key validation);

previously an open problem post-quantumly
I Smallest keys of all post-quantum key exchange proposals
I Competitive speed: ∼ 35 ms per operation
I Security is based on a well-studied mathematical problem

(no added extra structure that could weaken security)

28 / 33

Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i). An attacker

has to compute one isogeny of large degree.
I Alternative way of thinking about it: Alice has to compute

the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√p).

29 / 33

Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i).

An attacker
has to compute one isogeny of large degree.

I Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√p).

29 / 33

Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i). An attacker

has to compute one isogeny of large degree.

I Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√p).

29 / 33

Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i). An attacker

has to compute one isogeny of large degree.
I Alternative way of thinking about it: Alice has to compute

the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√p).

29 / 33

Classical Security

I Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

I Say Alice’s secret is isogeny is of degree `e1
1 · · · `

en
n . She

knows the path, so can do only small degree isogeny
computations, giving complexity O(

∑
ei`i). An attacker

has to compute one isogeny of large degree.
I Alternative way of thinking about it: Alice has to compute

the isogeny corresponding to one path from E0 to EA,
whereas an attacker has compute all the possible paths
from E0.

I Best classical attacks are (variants of) meet-in-the-middle:
Time O(4

√p).

29 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I Shor’s (polynomial time) algorithm does not apply
because the nodes in the graph do not form a group.

I Best algorithms are Hidden-shift algorithms:
Subexponential complexity (Kuperberg, Regev).

I Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

I Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

I Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

I Childs-Jao-Soukharev [CJS] applied Kuperberg/Regev to
CRS – their attack also applies to CSIDH.

I Part of CJS attack computes many paths in superposition.

30 / 33

Quantum Security

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).

I Asymptotic complexity is relatively well understood [BIJ],
[JLLR]

I [BLMP] gives full computer-verified simulation of
quantum evaluation of isogenies concrete estimates for
a given security level (‘NIST level I’)

31 / 33

Quantum Security

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I Asymptotic complexity is relatively well understood [BIJ],

[JLLR]

I [BLMP] gives full computer-verified simulation of
quantum evaluation of isogenies concrete estimates for
a given security level (‘NIST level I’)

31 / 33

Quantum Security

I The exact cost of the Kuperberg/Regev/CJS attack is
subtle – it depends on:

I Choice of time/memory trade-off (Regev/Kuperberg)
I Quantum evaluation of isogenies

(and much more).
I Asymptotic complexity is relatively well understood [BIJ],

[JLLR]
I [BLMP] gives full computer-verified simulation of

quantum evaluation of isogenies concrete estimates for
a given security level (‘NIST level I’)

31 / 33

Work in progress & future work

I Optimize the constant-time implementation of CSIDH.

I More applications of CSIDH (recall the many applications
of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.

32 / 33

Work in progress & future work

I Optimize the constant-time implementation of CSIDH.
I More applications of CSIDH (recall the many applications

of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.

32 / 33

Work in progress & future work

I Optimize the constant-time implementation of CSIDH.
I More applications of CSIDH (recall the many applications

of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.

32 / 33

Work in progress & future work

I Optimize the constant-time implementation of CSIDH.
I More applications of CSIDH (recall the many applications

of classical Diffie-Hellman)!
The tiny keys make CSIDH ideal for implementation on small devices.

I Explore different graph structures occuring for other
curves/geometrical objects.

I More applications exploiting new graph structures.

32 / 33

Thank you!

33 / 33

Parameters

CSIDH-log p in
te

nd
ed

N
IS

T
le

ve
l

pu
bl

ic
ke

y
si

ze

pr
iv

at
e

ke
y

si
ze

ti
m

e
(f

ul
le

xc
ha

ng
e)

cy
cl

es
(f

ul
le

xc
ha

ng
e)

st
ac

k
m

em
or

y

cl
as

si
ca

ls
ec

ur
it

y

CSIDH-512 1 64 b 32 b 70 ms 212e6 4368 b 128
CSIDH-1024 3 128 b 64 b 256
CSIDH-1792 5 224 b 112 b 448

33 / 33

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very
little in common, and are likely to be useful for different applications.

Here is a comparison for (conjectured) NIST level 1:

CSIDH SIDH
Speed (NIST 1) 65ms (can be improved) ≈ 10ms2

Public key size (NIST 1) 64B 378B
Key compression (speed) ≈ 15ms
Key compression (size) 222B

Constant-time slowdown ≈ × 2.2 (can be improved) ≈ × 1
Submitted to NIST no yes

Maturity 11 months 8 years
Best classical attack p1/4 p1/4

Best quantum attack Lp[1/2] p1/4

Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc

Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow3 seconds
Signatures (quantum) seconds still seconds?

2
This is a very conservative estimate!

3
Word on the street is that a paper is coming with a signature scheme that takes milliseconds.

33 / 33

References

AMW Appelbaum, Martindale, and Wu:
Tiny Wireguard Tweak
(upcoming)

BLMP Bernstein, Lange, Martindale, and Panny:
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org (Eurocrypt 2019)

CLMPR Castryck, Lange, Martindale, Panny, Renes:
CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383 (Asiacrypt 2018)

DG De Feo, Galbraith:
SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

DGOPS Delpech de Saint Guilhem, Orsini, Petit, and Smart:
Secure Oblivious Transfer from Semi-Commutative Masking
https://ia.cr/2018/648

FTY Fujioka, Takashima, and Yoneyama:
One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

https://quantum.isogeny.org
https://ia.cr/2018/383
https://ia.cr/2018/824
https://ia.cr/2018/648
https://eprint.iacr.org/2018/1033

