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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

> (G, x) = (Fp — {0}, x).
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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:
> (G7 *) = (]FP o {0}' X)'
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G
(x,8) = g*---xg.
—_——

x times
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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

> (G, ) = (F, — {0}, x).
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.
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(x,g) +— g*---*g.
—_——

x times
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» g€ F, — {0}, then (x,g) — g*.

3 /40



Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:

> (G7 *) = (]FP o {0}7 X)'
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

ZxG — G
(x,g) +— g*---*g.
—_——

x times
Examples:

» g€ F, — {0}, then (x,g) — g*.
» P ¢ E(FF), then (x, P) — xP.
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Traditional Ditfie-Hellman key exchange
Suppose that (G, *) is a finite group. Examples:
> (G7 *) = (]FP o {0}' X)'
» (G,*) = (E(F,), +), where + is the elliptic curve addition
that was defined in Mehdi’s lecture.

For a finite group (G, *) we have a map

7ZxG — G

(x,8) = g*---xg.
—
X times

Examples:

» g€ F, — {0}, then (x,g) — g*.
» P ¢ E(FF), then (x, P) — xP.
For simplicity, for a finite group (G, *) and x € Z, we’ll write g*
forgs*---xg.
—_——

x times
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Traditional Ditfie-Hellman key exchange

For a finite group (G, %), if g € G and x € Z, we write
g =g* *8.
——

x times
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Traditional Ditfie-Hellman key exchange

For a finite group (G, %), if g € G and x € Z, we write
g =g* *8.
——

x times

geG

beZz
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Traditional Ditfie-Hellman key exchange

For a finite group (G, %), if g € G and x € Z, we write

g =g* *8.
N’
g€G
g

x times
beZ

l

aeZ b

I
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Traditional Ditfie-Hellman key exchange

For a finite group (G, %), if g € G and x € Z, we write

g =g* *8.
N’
g€G
g

x times

s

- beZ
aeZ b

g b
(gh)a (ga)
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Traditional Ditfie-Hellman key exchange
For a finite group (G, %), if g € G and x € Z, we write

g =gx-xg.
N———

x times
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Traditional Ditfie-Hellman key exchange
For a finite group (G, %), if g € G and x € Z, we write

g =gx-xg.
N———

x times

R

— beZ
ac b b
(gh)a <g_ (gﬂ)

> k= (g")" =g =g"" = ()"
» Computing a or b given ¢* and g’ should be hard (i.e.
slow).

4 /40



Traditional Ditfie-Hellman key exchange

For a finite group (G, %), if g € G and x € Z, we write
g =g* *8.
——

x times
g€G
g
N4
— beZ
18 g ()"
8”) .

> k= (g")" =g =g"" = ()"
» Computing a or b given ¢* and g’ should be hard (i.e.
slow).

» Computing ¢’ given g and a should be easy (i.e. fast).
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Square-and-multiply
Computing g*: an example. Suppose |G| = 23 and that Alice

computes g13 .
g' g_o g
. £
g, .8
85 . 818
s - g”
g 8"
¢ * ° gt
g gt
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Square-and-multiply
Computing g*: an example. Suppose |G| = 23 and that Alice

computes g13
0
gl g g22 )
g ‘/q ° :?2
gS ‘/q .gZU
84 ./ g . g19
8
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Square-and-multiply
Computing g*: an example. Suppose |G| = 23 and that Alice

computes g13 .
0
1 g 22
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Square-and-multiply
Computing g*: an example. Suppose |G| = 23 and that Alice

computes g13 .
1 ¢ o>
g by
g3 . .gZU
g, .8
85 . 818
g ol
g g
¢ * ° gt
g gt
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Square-and-multiply
Computing g*: an example. Suppose |G| = 23 and that Alice

computes g13 .
1 ¢ o>
g
g3 . .gzu
g, .87

.8
. g17

g6

s
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Square-and-multiply
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Square-and-multiply

» Alice uses the knowledge that
13=1-224+1-2240-2' +1-2°to compute g'3
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Square-and-multiply

8 o e e *5.8
g0 g g2 P

» Alice uses the knowledge that
13=1-22+1-2240-2!+1-2°to compute g'°.

» An (naive) ! attacker has to check ¢* fora =0, ...,13, so
has no shortcuts.

1a smart attacker like Mehdi can often exploit the structure of the specific

group to do better than this
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Square-and-multiply

8 o e e *5.8
g0 g g2 P

» Alice uses the knowledge that
13=1-22+1-2240-2!+1-2°to compute g'°.

» An (naive) ! attacker has to check ¢* fora =0, ...,13, so
has no shortcuts.

» Exercise: prove that, for any cyclic group G of size n, if
g € Ganda € Z, Alice can compute ¢ in < log, (1)
(multiplication) steps. (In polynomial time).

1a smart attacker like Mehdi can often exploit the structure of the specific

group to do better than this (but even Mehdi can’t manage polynomial time)
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Quantum revolution

Let G be a finite group, let ¢ € G and let x € Z. As before, define
g by
ZxG — G
(v.8) > gri=gx---xg.

x times

Alice can compute ¢* in polynomial time.
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Quantum revolution

Let G be a finite group, let ¢ € G and let x € Z. As before, define
g by
ZxG — G
(v.8) > gri=gx---xg.

x times

’ Alice can compute ¢* in polynomial time.

Given a quantum computer, Shor’s algorithm computes x from
g* ...also in polynomial time.
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Quantum revolution

Let G be a finite group, let ¢ € G and let x € Z. As before, define
g by
ZxG — G
(v.8) > gri=gx---xg.

x times

’ Alice can compute ¢* in polynomial time.

Given a quantum computer, Shor’s algorithm computes x from
g* ...also in polynomial time.

~ Idea:

Replace the map Z x G — G by a group action of a group H on
asetS:
HxS—S.
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What do we keep from traditional (EC)DH?
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What do we keep from traditional (EC)DH?
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from traditional (EC)DH?

g 22

What do we keep
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What do we keep from traditional (EC)DH?

1 g0 2

Cycles are compatible: [right, then left] = [left, then right], etc.
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What do we keep from traditional (EC)DH?
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Cycles are compatible:
g13 = go , etc.
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What do we keep from traditional (EC)DH?
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Cycles are compatible:
g = gxg? , etc.
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What do we keep from traditional (EC)DH?
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K
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Cycles are compatible:
gl = ghegxg® , etc.
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What do we keep from traditional (EC)DH?

Cycles are compatible:
8P = gPxgtugxg’ , etc.
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What do we keep from traditional (EC)DH?

VO
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Cycles are compatible:

g3 = ¢Bxtugxgl = g , etc.
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What do we keep from traditional (EC)DH?

Cycles are compatible:
g =gl = g'xg

, etc.
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What do we keep from traditional (EC)DH?

Cycles are compatible:
80 =g xligig’ = gt gl , etc.
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What do we keep from traditional (EC)DH?

Cycles are compatible:
g13 = gs*g4*g*g0 = g*g4*g8 *gO , etc.
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What do we keep from traditional (EC)DH?

Cycles are compatible:
8P = gPxgtugxg? = gxgtig x g0 = g’ etc.
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What do we keep from traditional (EC)DH?
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Cycles are compatible:
g =gPugtugxg? = gxgigt 180 = gligl ete.
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What do we keep from traditional (EC)DH?
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Cycles are compatible:
g = gPugtugxg® = gxgtigt 180 = guglagl ete.

9/40



What do we keep from traditional (EC)DH?

Cycles are compatible:
g3 = ¢Bxgtugagl = g0t g8 5 g0 = oBrgxot gl ete.
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Graphs of elliptic curves
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves

&
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Nodes: Supersingular elliptic curves E4: y* = x° + Ax* + x over Fyo.
Edges: 3-, 5-, and 7-isogenies (more details to come).
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Diffie-Hellman on ‘nice” graphs

Alice
a= [+7 ) +7 _]

.
Eq3
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Diffie-Hellman on ‘nice” graphs

Alice Bob
a:[Ta_v—i_v_] bz[*a—i_a_?—i_]

Ey
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Diffie-Hellman on ‘nice” graphs

Alice Bob
a:[—i_a??—i_v—] b=[+aT7_7+]
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Diffie-Hellman on ‘nice” graphs

Alice Bob
a:[—i_,_?—}]‘_’_] b=[+a+7?7+]
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Diffie-Hellman on ‘nice” graphs

Alice Bob
a:[+7_7+7¥] b=[+a+7_7T]

Ey
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Diffie-Hellman on ‘nice” graphs

Bob
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs

Alice Bob
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs

Alice Bob
a:[+7_7+7_] b=[+a+7_7+]
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Elliptic curves
Recall from Mehdi’s talk:
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Elliptic curves
Recall from Mehdi’s talk:

» Elliptic curves over [, can be thought of as curves of the
form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at
infinity’.
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Elliptic curves
Recall from Mehdi’s talk:

» Elliptic curves over [, can be thought of as curves of the
form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at
infinity’.

» There is a geometric group law called + on the rational
points of E.
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Elliptic curves
Recall from Mehdi’s talk:

» Elliptic curves over [, can be thought of as curves of the
form E/F, : y* = f(x) with deg(f) = 3 with a ‘point at
infinity’.

» There is a geometric group law called + on the rational
points of E.

» The point at infinity P is the identity of the group.

The group of rational points on E is
E(Fp) = {(x.y) € Fy: y* =f(x)} U {Poc}.

Example
Define E/Fs : y?> = x> + 1. Then

E(FS) = {(0’ 1)’ (07 _1)7 (273)7 (2’ _3)’ (_1’ 0), Poo}'
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Elliptic curves

>E:y2:x3—|—1. 4 &
» Recall

E(FS) = {(2’3)a (07 _1)7

(_17 )7 (0’ 1)7
(2’ _3)’Poo}'

24
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Elliptic curves

» E:y2=x+1. 4 4
» Recall Y
P
E(FS) - {(2’3)a (07 _1)7
_17 )7 (0’1)7

(1 -

24
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Elliptic curves

13 /40

+ 1.

» E:y2 =43

» Recall

{(2’3)a (07 _1)7

Fs5) =

E(

,0),(0,1),

1

(

3),Px}-

(27 -
(P, 2P,



Elliptic curves

> E:y2:x3—|—1.

» Recall

\I” .
—
= 8
~— P
PR
o o
— b

[N

E(FS) = { 2’3)a (07 _1)a

= {P,2P,
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Elliptic curves

» E:y2=x+1.

» Recall

E(FS) = {(2’3)a (07 _1)7

(_17 0)7 (0’ 1)7
(27 _3)’Poo}'

{P,2P,

3P,
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Elliptic curves

» E:y2=x+1.

» Recall
E(FS) = {(2’3)a (07 _1)a
(_17 )7 (0’ 1)7
(2’ _3)’POO}
— (P, 2P,
3P,

24

f'%\%“’
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Elliptic curves

» E:y2=x+1.
» Recall
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Elliptic curves

» E:y2=x+1.

» Recall
E(FS) - {(2’3)a (07 _1)7
(_17 )7 (0’ 1)7
(2’ _3)’POO}
= {P,2P,
3P, 4P,

4p

24

f'%\%“’
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Elliptic curves

» E:y? =2+ 1.

» Recall

FS) = {(2’3)a (07 _1)7

E(

(_17 0)7 (0’ 1)7
(2,-3),Px}.

{P,2P,

3P, 4P,
5P,
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Elliptic curves

» E:y2=x+1.

» Recall
E(Fs) = {(2,3), (0, -1),
(_17 )7 (0’ 1)7
(2’ _3)’POO}
= {P,2P,
3P, 4P,
5P,

1y
P
2,,
2P
R A
2 k‘ 2
4P
_2 1
5p
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Elliptic curves

» E:y? =2+ 1.

» Recall

FS) = {(2’3)a (07 _1)7

E(

(_17 0)7 (0’ 1)7
(2,-3),Px}.

{P, 2P,

3P, 4P,

5P, 6P}
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Elliptic curves

» E:y2=x+1.

» Recall
E(Fs) = {(2,3), (0, -1),
(_17 )7 (0’ 1)7
(2’ _3)’POO}
= {P,2P,
3P, 4P,
5P, 6P}

» E(Fs) is cyclic -
E(Fs5) = Cs.

1y
P
2,,
2P
R A
2 k‘ 2
4P
_2 1
5p
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Elliptic curves

Example
E/Fs : y2 =x3+ 1, then E(FF5) = Cs.
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Elliptic curves

Example

E/Fs5:y? = x> + 1, then E(F5) = Cs.

Definition

An elliptic curve E defined over a finite prime field F p with
p > 5is supersingular if #E(F,) = p + 1.
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Elliptic curves

Example

E/Fs5:y? = x> + 1, then E(F5) = Cs.

Definition

An elliptic curve E defined over a finite prime field F p with

p > 5is supersingular if #E(F,) = p + 1.

Theorem
If E/Fy is supersingular and p > 5 then

E(]Fp) = CP+1 or E(FP) = C2 X C(p+1)/2.
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Elliptic curves

Definition
A point P € E(F)) is called a n-torsion point if nP = Pq.
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Elliptic curves

Definition

A point P € E(F}) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = Py,

Example

E/Fs : y*> = x> + 1. Then E(F,) = Cg and is generated by
P =(2,3).
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Elliptic curves

Definition

A point P € E(Fp) is called a n-torsion point if nP = P,. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = P.

Example

E/Fs : y* = x> 4+ 1. Then E(F,) = Cg and is generated by
P=(2,3).

> (2,3) is a 6-torsion point of order 6.
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Elliptic curves

Definition

A point P € E(F,) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P,

Example

E/Fs : y*> = x> + 1. Then E(F,) = Cg and is generated by
P=(2,3).

» (2,3) is a 6-torsion point of order 6.

» (—1,0) = 3(2,3) is a 6-torsion point and a 2-torsion point,

and has order 2.
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Elliptic curves

Definition

A point P € E(F}) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = P,.

Example

E/IF, supersingular and p > 5.
Then either
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Elliptic curves

Definition

A point P € E(F}) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order # if there is no positive
m < n such that mP = P,.

Example

E/IF, supersingular and p > 5.
Then either

» E(F,) = C,1; generated by a point P of order p + 1, or
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Elliptic curves

Definition

A point P € E(F}) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P,.

Example

E/IF, supersingular and p > 5.
Then either

» E(F,) = C,1; generated by a point P of order p + 1, or

» E(Fp) = Ca x C(py1)/2 and contains a point P of order
(r+1)/2.
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Elliptic curves

Definition

A point P € E(F}) is called a n-torsion point if nP = Ps.. An
n-torsion point P is a point of order 7 if there is no positive
m < n such that mP = P,.

Example
E/IF, supersingular and p > 5.
Then either
» E(F,) = C,1; generated by a point P of order p + 1, or
» E(Fp) = Ca x C(py1)/2 and contains a point P of order
(r+1)/2.

In either case, if ¢|(p + 1) is an odd prime, then %P is a point
of order /.

5/40



Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example
Define Es; /Fy19 : y* = x> + 51x% + x

[2]: E51 — E51
(x,y) = 2. (x,y) = (X,y) + (X,]/)
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over [} is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example
Define Es; /Fy19 : y* = x> + 51x% + x

[2]: E51 — E51
(x,y) = 2. (x7]/) = (X,y) + (X,]/)

» As [2] is a morphism, it induces a morphism of groups
E(Fa19) = E(Far9), ie. [2](P + Q) = [2](P) + [2(Q)-
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example
Define E51/F419 : ]/2 =x3 + 51x2 +Xx

[2]: E51 — E51
(x7y) = 2'(X,y) = (X,]/) + (xay)

17 / 40



Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E. It is given by rational maps.

Example
Define E51/F419 : ]/2 =x3 + 51x2 +x

[2] : E51 — E51
(xvy) = 2 (X,y) = (X,y) + (xay)

> [2(Pso) = Poo + Poo = P
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E. It is given by rational maps.

Example
Define E51/F419 : ]/2 =x3 + 51x2 +Xx

[2]: E51 — E51
(x7y) = 2'(X,y) = (X,]/) + (xay)

» [2](Ps) = Poo + Po = Po. So [2] maps the group identity
of Es; to the group identity of Es;.
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E'. It is given by rational maps.

Example

» Exercise: show that

2]: Es — Es
1 —18x>—163x2—18x+1
(x’y) = 8x(x2+9x+1) )
y(x®+18x°4-5x* —5x2—18x—1)
(8x(x24+9x+1))2

Hint: Try to compute the rational maps using the group
law from Mehdi’s talk or see David’s talk to learn how to
compute the rational maps with Sage.
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Elliptic curves and isogenies

Definition

An isogeny of elliptic curves over F, is a non-zero morphism
E — E’ that maps the group identity of E to the group identity
of E. It is given by rational maps.

Example

Fact: let Es1 /Fay9 : y2 = x3 + 51x% 4+ x and
E9/Fuao : yz =x3+9x% + xbe elliptic curves. Then

f : E51 — Eg

x> —183x%2+73x+30
(xay) — ( (x+118)2 ’
23 —65x2—104x+174
(x+118)3 :

is an isogeny.
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Elliptic curves and isogenies

Example

f : E51 — Eg

x3—183x24-73x+30
(x’ y) — ( (x+118)2 ’
23 —65x2—104x+174
(x+118)3 :
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Elliptic curves and isogenies

Example

f : E51 — Eg

x®—183x24-73x+30
(x’ 3/) — ( (x+118)2 ’

23 —65x2—104x+174
(x+118)3 :

The kernel ker(f) is the set of points (x,y) that map to the group
identity Po:
» If (x,y) € ker(f) then (x,y) = P or x = —118.
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Elliptic curves and isogenies

Example

f : E51 — Eg

x®—183x24-73x+30
(x’ ]/) — ( (x+118)2 ’

23 —65x2—104x+174
(x+118)3 :

The kernel ker(f) is the set of points (x,y) that map to the group
identity P..:

» If (x,y) € ker(f) then (x,y) = P or x = —118.

» If (—118,y) € Es then (x,y) = (—118, £51).
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Elliptic curves and isogenies

Example

f : E51 — Eg
x3—183x24-73x+30
(x’ ]/) — ( (x+118)2 ’
23 —65x2—104x+174
(x+118)3 :

The kernel ker(f) is the set of points (x,y) that map to the group
identity Po:

» If (x,y) € ker(f) then (x,y) = P or x = —118.

» If (—118,y) € Es then (x,y) = (—118, £51).

» f(Ps) =f((—118,+£51)) = P.

Fact: an isogeny is uniquely determined by its kernel.
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Elliptic curves and isogenies

Example

f : E51 — Eg
x3—183x24+73x4-30
(xa y) — ( (x4118)2 )
x3—65x2 —104x+174
(x+118)3 :
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Elliptic curves and isogenies

Example

f : E51 — Eg
x3—183x24+73x4-30
(xa y) — ( (x4118)2 )
x3—65x2—104x+174
(x+118)3 :

» ker(f) = {(—118,51), (118, —51), P, }.
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Elliptic curves and isogenies

Example

f : E51 — Eg

x3—183x24+73x4-30
(xay) — ( (x+118)2 )

X3 —65x2—104x+174
(x+118)3 :

» ker(f) = {(—118,51), (118, —51), P, }.

» ker(f) is a subgroup of Es1(Fa19) (because f induces a
morphism of groups).
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Elliptic curves and isogenies

Example

f : E51 — Eg

x3—183x24+73x4-30
(xay) = ( (x+118)2 )

X3 —65x2—104x+174
(x+118)3 :

> ker(f) = {(~118,51), (~118, —51), Poc ).
» ker(f) is a subgroup of Es1(Fa19) (because f induces a
morphism of groups).

» ker(f) is order 3, so must be a cyclic group, hence
(—118,51) + (—118,51) + (—118,51) = P.
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Elliptic curves and isogenies

Example

f : E51 — Eg

x°—183x2473x+30
(y) — (LI

x3—65x2—104x+174
(x1118)3
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Elliptic curves and isogenies

Example

f : E51 — Eg

x°—183x2473x+30
(y) — (LI

x3—65x2—104x+174
(x1118)3

» ker(f) is a cyclic subgroup of Es;(F419), generated by a
3-torsion point P = (—118, 51).
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Elliptic curves and isogenies

Example

f : E51 — Eg

x°—183x2473x+30
(y) — (LI

x3—65x2—104x+174
(x1118)3

» ker(f) is a cyclic subgroup of Es;(F419), generated by a
3-torsion point P = (—118, 51).

» Q= (210, v380) € E(F49) is also a point of order 3.
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Elliptic curves and isogenies

Example

f: E51 — E9
x°—183x2473x+30
(y) — (LI

x3—65x2—104x+174
(x1118)3

» ker(f) is a cyclic subgroup of Es;(F419), generated by a
3-torsion point P = (—118, 51).

» Q= (210, v380) € E(F49) is also a point of order 3.
» Then f(Q) = (286,107+/380) is a point of order 3 on Ey.
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Elliptic curves and isogenies

Example
f : E51 — E9
3 2
(x’ y) — (x 1?;?:1—;{;7)32}(—’_307
x3—65x2—104x+174>
(x+118)3
» ker(f) is a cyclic subgroup of Es;(F419), generated by a

3-torsion point P = (—118, 51).
Q = (210, v380) € E(F492) is also a point of order 3.
Then f(Q) = (286,107+/380) is a point of order 3 on Es.

There is another 3-isogeny ¢ : E9g — E51 with cyclic kernel
generated by f(Q).

v

v

v
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Elliptic curves and isogenies

Example
f : E51 — E9
3 2
(x’ y) — (x 1?;?:1—;{;7)32}(—’_307
x3—65x2—104x+174>
(x+118)3
» ker(f) is a cyclic subgroup of Es;(F419), generated by a

3-torsion point P = (—118, 51).
Q = (210, v380) € E(F492) is also a point of order 3.
Then f(Q) = (286,107+/380) is a point of order 3 on Es.

There is another 3-isogeny ¢ : E9g — E51 with cyclic kernel
generated by f(Q).

v

v

v

» gof : Es; — Es is the multiplication-by-3 map.
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Elliptic curves and isogenies

Definition
Let E,E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = .

Definition
Let E/FF, be an elliptic curve and let £ # p be prime. Let
f : E — E’' be an (-isogeny.
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Elliptic curves and isogenies

Definition
Let E,E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = .

Definition

Let E/FF, be an elliptic curve and let £ # p be prime. Let

f : E — E’be an ¢-isogeny. Then there exists a unique (up to
isomorphism) (-isogeny fV : E' — E such that f" o f is the
multiplication-by-¢ map on E.
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Elliptic curves and isogenies

Definition

Let E,E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = .
Definition

Let E/FF, be an elliptic curve and let £ # p be prime. Let

f : E — E’be an ¢-isogeny. Then there exists a unique (up to
isomorphism) (-isogeny fV : E' — E such that f" o f is the
multiplication-by-¢ map on E. This is called the dual isogeny.
Example

E5]/F419 : yZ = x3 +51x2 + x and Eg/F419 : y2 = x3 + 9x2 + x.
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Elliptic curves and isogenies

Definition
Let E,E'/F, be elliptic curves and let £ be a prime different from
p. An (-isogeny f : E — E’ is an isogeny with # ker(f) = .

Definition

Let E/FF, be an elliptic curve and let £ # p be prime. Let

f : E — E’be an ¢-isogeny. Then there exists a unique (up to
isomorphism) (-isogeny fV : E' — E such that f" o f is the
multiplication-by-¢ map on E. This is called the dual isogeny.

Example

E5]/F419 : yz = x3 +51x2 + x and Eg/F419 : y2 = X3 + 9x2 + x.
The dual of the 3-isogeny f : Es; — Eg with kernel generated by
(—118,51) is the 3-isogeny f" : E9 — Es; with kernel generated
by (286, 107+/380).

23 /40



Isogeny graphs
Graph of 3-isogenies over Fyig.

Example

Es;¢—=e@ Ey Es1 @ o Eq
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Isogeny graphs

Graph of 3-isogenies over Fyig.

Example
Es;@¢——=e@ Ey Es @ o Fy
E Eiss F0 By E
410 e T 9
/
Ezes ) N Es1
Eqo4, \\.ElS
Ezs / \,5344

Ejg4e -\5275
Eio1e /°Ezzs
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Isogeny graphs

A 3-isogeny

(picture not toseale) _ _ — —
>

ot yZ:x3 +51% 4x ——— Eq: yz =x34+9x24x
9723 —183:2 4«
X2 —183x+97

CNON
. 1333 415432 —5x+97

VSt 1se—13

Ey91 1\ /.15228
E |
74\ ; [ Es
Eq3 \. / ke
Espg AN . ) % »

B e
199 Faoo gy E20
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F),
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F),
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.

» In our example

. 3
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defined over F, together with its dual isogeny.

» In our example
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F),
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.

» In our example
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F),
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.

» In our example
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Isogeny graphs

Definition
Let p and / be distinct primes. The isogeny graph G, over F),
has
» Nodes: elliptic curves defined over F, with a given
number of points (up to F,-isomorphism).
» Edges: an edge E — E’ respresents an (-isogeny E — E’
defined over F, together with its dual isogeny.

» Generally, the G, look something like

\\./ \_// K
SAE QW2
S G et =
- >\ ¢< < NS
7l AN\ I~ .'.%/I\N

¢ .
..........

26 /40



Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’
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Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E — E.
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Endomorphisms

» Our graphs are cycles because all the curves have ‘the
same endomorphisms’

Definition
An endomorphism of an elliptic curve E is a morphism E — E.

Example

» For any n € Z, the map

m: E — E
(x,y) — n(xy).
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Endomorphisms

» Our graphs are cycles because all the curves have ‘the

same endomorphisms’

Definition

An endomorphism of an elliptic curve E is a morphism E — E.

Example

» For any n € Z, the map
m: E — E
(xy) = nlxy).
» For E/F,, the Frobenius map

T E — E
(xy) = (F,yF).

27 /40



Endomorphism rings

Let E/IF, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (2", ")
twice results in the multiplication by —p map [—p].
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Endomorphism rings

Let E/IF, be supersingular.
» Applying the Frobenius endomorphism (x,y) — (2", ")
twice results in the multiplication by —p map [—p].
» The set of F,-rational endomorphisms of a curve E/IF),
forms a ring Endp, (E).
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Endomorphism rings

Let E/IF, be supersingular.

» Applying the Frobenius endomorphism (x,y) — (2", ")
twice results in the multiplication by —p map [—p].

» The set of F,-rational endomorphisms of a curve E/IF),
forms a ring Endp, (E).

» We can define a ring homomorphism

Z[\/=p] — Endg,(E)
n > [n]
VP = .

28 /40



Endomorphism rings

Let E/IF, be supersingular.

>

Applying the Frobenius endomorphism (x,y) — (¥, ")
twice results in the multiplication by —p map [—p].

The set of F,-rational endomorphisms of a curve E/FF,,
forms a ring Endp, (E).

We can define a ring homomorphism

Zl\/=p) — Endpp (E)
n — [n]

V=P .

Fact: if p =3 (mod 8),p > 5,and E4/F, : y* = x> + Ax® +x
is supersingular, then Endy, (E) = Z[,/=p].
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Group actions

Remember: we wanted to replace exponentiation

7ZxG — G

(x,8) = gi=gx-xg.
—
X times

by a group action of a group H on a set S:

HxS —S.

29 /40



Group actions

Remember: we wanted to replace exponentiation

7ZxG — G

(x,8) = gi=gx-xg.
—
X times

by a group action of a group H on a set S:
HxS§—S.

Now we can do it!
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Group actions

Definition
An action of a group (H, -) on a set S is a map

HxS — S
(h,s) +— hxs

such thatid xs = sand hy % (hp xs) = (hy - hp) xs for all s € S and
all hy,hy € H.
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Group actions

Definition
An action of a group (H,-) on a set S is a map

HxS — S
(h,s) +— hxs

such thatid xs = sand hy % (hp xs) = (hy - hp) xs forall s € S and
all hy,hy € H.

Example

Traditional Diffie-Hellman is an example:
(H,)=Z/(p —1)Z)*,+) and S = (Z/pZ)*. Exponentiation
(h,s) — s is a group action.
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Group actions

Definition
An action of a group (H,-) on a set S is a map

HxS — S
(h,s) +— hxs

such thatid xs = sand hy % (hp xs) = (hy - hp) xs for all s € S and
all hl, hz € H.
For the CSIDH group action

» the set S is the set of supersingular
Ea/Fy:y* = x® 4+ Ax? + x withp =3 (mod 8) and p > 5.
» the group H is the class group of the endomorphism ring

Z1/7)
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Class groups
Let O = Z[\/=p].
Definition
Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.
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Class groups
Let O = Z[\/=p].
Definition
Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,2 +V-3) :={7a+ 2+ V-3)b:a,b € Z|V-3]}.
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Class groups
Let O = Z[\/=p].
Definition
Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,2 +V-3) :={7a+ 2+ V-3)b:a,b € Z|V-3]}.

Definition
A principal ideal is an ideal of the form [ = («).
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Class groups
Let O = Z[\/=p].
Definition
Anideal I C O is the set of all O-linear combinations of a given
set of elements of O.

Example
In Z[v/—3] we can consider the ideal

(7,2 +V-3) :={7a+ 2+ V-3)b:a,b € Z|V-3]}.

Definition
A principal ideal is an ideal of the form [ = («).

» We can multiply ideals I and | C O:
[-J={(aB:acl,pe]).

31/40



Class groups

Definition
Twoideals I,] C O are equivalent if there exist ., 5 € O \ {0}
such that

’modulo details
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Class groups

Definition
Twoideals I,] C O are equivalent if there exist ., 5 € O \ {0}
such that

Definition
The ideal class group of O is?

Cl(O) = {equivalence classes of nonzero ideals I C O}.

’modulo details
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Class groups

Definition
Twoideals I,] C O are equivalent if there exist ., 5 € O \ {0}
such that

Definition
The ideal class group of O is?

Cl(O) = {equivalence classes of nonzero ideals I C O}.

Miracle fact: the ideal class group is a group!

’modulo details
32 /40



Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F, : y* = x> + Ax* + x
withp =3 (mod 8) and p > 5.
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F, : y* = x> + Ax* + x
withp =3 (mod 8) and p > 5. How?

» Recall: Anisogeny is uniquely determined by its kernel.
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F, : y* = x> + Ax* + x
withp =3 (mod 8) and p > 5. How?

» Recall: Anisogeny is uniquely determined by its kernel.
» LetI C Endp,(E) be an ideal. Then

Hp = Nael ker(a)

is a subgroup of E(F,).
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F, : y* = x> + Ax* + x
withp =3 (mod 8) and p > 5. How?

» Recall: Anisogeny is uniquely determined by its kernel.
» LetI C Endp,(E) be an ideal. Then

Hp = Nael ker(a)

is a subgroup of E(F,).
» Define f; : E — E’ to be the isogeny with kernel H;.
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Class group action

The class group of the endomorphism ring Z[,/—p] acts on the
set S of supersingular elliptic curves E4 /F, : y* = x> + Ax* + x
withp =3 (mod 8) and p > 5. How?

» Recall: Anisogeny is uniquely determined by its kernel.
» LetI C Endp,(E) be an ideal. Then

Hp = Nael ker(a)

is a subgroup of E(F,).
» Define f; : E — E’ to be the isogeny with kernel H;.
The CSIDH group action is:

Cl(Endg,(E)) xS — S
(I,E) = fi(E).

33/40



Class group action

The CSIDH group action is:

Cl(Endg,(E)) x S — S
(IE) s I+E:=f(E).
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Class group action

The CSIDH group action is:

Cl(Endg,(E)) x S — S
(IE) s I+E:=f(E).

» The isogeny fj is an ¢-isogeny if and only if I = ([¢], 7 & [1]).
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Class group action

The CSIDH group action is:
Cl(Endp,(E)) xS — S
(I,E) — IxE:=fi(E).

» The isogeny fj is an ¢-isogeny if and only if I = ([¢], 7 & [1]).

» A’4’ direction isogeny on the /-isogeny graph is the action
of ([¢], —[1]).
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Class group action

The CSIDH group action is:

Cl(Endg,(E)) x S — S
(IE) s I+E:=f(E).

» The isogeny fj is an ¢-isogeny if and only if I = ([¢], 7 & [1]).

» A’4’ direction isogeny on the /-isogeny graph is the action
of ([f],m —[1]).

» A’/ direction isogeny on the (-isogeny graph is the action
of ([¢],m + [1]).

34 /40



Diffie-Hellman with CSIDH

Alice Bob
ﬂ:[-l—,—,-l-,—] b:[+7+7_a+]

Ezs, Eaus
Ey 1\5275
Ejore /'Ezzs

Ev7f Eous
E41\3' ée
N 7

v Y
5124?.\._./‘5./5295
199 o p, E220
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Diffie-Hellman with CSIDH

Alice Bob
a:[*u_a—i_a_] b:[—)lt_a—’_’_u—’_]

E158: <3,7‘(‘—1>*E0 E199: <7,7T—1>*E0
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Diffie-Hellman with CSIDH

Alice Bob
El:[—i-,;,—}—,—] b:[—i_,—”]‘_’_,—’_]

Eis = (5,m+ 1) *E1ss Eg0 = (5,m — 1) * E199
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Diffie-Hellman with CSIDH

Alice Bob
a:[—i_a_)—/‘{:a_] b:[+,—|—’—7—|—]

Eis = (3,m—1)*%Es1 Eps = (3,m+1) % Ey
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Diffie-Hellman with CSIDH

Alice Bob
a:[—i_u_a—}_a;] b:[+7+7_7j’r_]

Eig9 = (7,m+ 1) xEs; Eisg = (7, m — 1) % Epgs
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Diffie-Hellman with CSIDH

(exchange of public keys)
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Diffie-Hellman with CSIDH

Alice Bob
a:[*u_a—i_a_] b:[—)lt_a—’_’_u—’_]

Epio=(3,m—1)xEis8 Es1 = (7,m— 1) x Eq99
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Diffie-Hellman with CSIDH

Alice Bob
El:[—i-,;,—}—,—] b:[—i_,—”]‘_’_,—’_]

Esy = (5,m+ 1) * Esg Es10= (5,7 — 1) * Esy
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Diffie-Hellman with CSIDH

Alice Bob
a:[—i_,_,—’}]‘_’_] b:[+7+7_7+]

Eg=(3,m—1)*Es; Eis58 = (3,m+ 1) % Egqp
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Diffie-Hellman with CSIDH

Alice Bob
a:[—i_u_a—}_a;] b:[+7+7_7j’r_]

E390 = <7,7T =+ 1> * Eg E390 = (7,71' — 1> * E158

35/40



Diffie-Hellman with CSIDH

Alice Bob
a:[+7_a+a_] b:[+7+7_7+]

(shared secret key is E3g9) 35740



Design choices

» Choose small odd primes 41, ..., ¢,.
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» Choose small odd primes 41, ..., ¢,.
» Makesurep =4-/¢;---{;, —1is prime.
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Design choices

» Choose small odd primes 41, ..., ¢,.
» Makesurep =4-/¢;---{;, —1is prime.
» Fix Eo/F, : > = x> +x.
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Design choices

Choose small odd primes /1, ..., ¢,.
Make surep =4 - /(1 --- ¢, — 11is prime.
Fix Eo/F, : y* = x> + x.

Then E is supersingular.

vV v.vY
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Design choices

Choose small odd primes /1, ..., ¢,.

Make surep =4-/¢;---{, — 1is prime.

Fix Eo/F, : y* = x> + x.

Then Ej is supersingular. Exercise: show that there is a
point of order /; in Eq(F,) for every /1. .., £y.

vV v.vY
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Design choices

Choose small odd primes /1, ..., ¢,.

Make surep =4-/¢;---{, — 1is prime.

Fix Eo/F, : y* = x> + x.

Then Ej is supersingular. Exercise: show that there is a
point of order /; in Eq(F,) for every /1. .., £y.

vV v.vY

v

All arithmetic for computing /;-isogenies is now over .
(For more: see David’s talk).
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Design choices

vV v.vY

Choose small odd primes /1, ..., ¢,.

Make surep =4 -/4;--- £, — 1is prime.

Fix Eo/F, : y* = x> + x.

Then Ej is supersingular. Exercise: show that there is a
point of order /; in Eq(F,) for every /1. .., £y.

All arithmetic for computing /;-isogenies is now over .

(For more: see David’s talk).
Every G/, containing E is a disjoint union of cycles.

Every node of Gy, is of the form E4 : V=3 +A% +x-
can be compressed to just A € [, giving tiny keys.
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Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly (for
reasonable run-time)

» Small keys: 64 bytes at conjectured AES-128 security level
» Competitive speed: ~ 85ms for a full key exchange

» Flexible: compatible with 0-RTT protocols such as QUIC;
recent preprint uses CSIDH for ‘SeaSign” signatures
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Work in progress & future work

» Fast, constant-time implementation. For constant-time
ideas, see [BLMP].
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» More applications.

» [Your paper here!]
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3Cor\crete numbers in this paper should be treated with caution, see [Section 1.3, BLMP]
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