CSIDH: a post-quantum drop-in replacement for (EC)DH

Wouter Castryck¹ Tanja Lange² <u>Chloe Martindale²</u> Lorenz Panny² Joost Renes³

¹KU Leuven ²TU Eindhoven ³RU Nijmegen

ECC Autumn School, Osaka, 17-18 November 2018

Suppose that (G, *) is a finite group. Examples:

$$\blacktriangleright (G,*) = (\mathbb{F}_p - \{0\}, \times).$$

Suppose that (G, *) is a finite group. Examples:

- ► $(G,*) = (\mathbb{F}_p \{0\}, \times).$
- ▶ $(G,*) = (E(\mathbb{F}_p), +)$, where + is the elliptic curve addition that was defined in Mehdi's lecture.

Suppose that (G, *) is a finite group. Examples:

- ► $(G,*) = (\mathbb{F}_p \{0\}, \times).$
- ▶ $(G,*) = (E(\mathbb{F}_p), +)$, where + is the elliptic curve addition that was defined in Mehdi's lecture.

For a finite group (G, *) we have a map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Suppose that (G, *) is a finite group. Examples:

- ► $(G,*) = (\mathbb{F}_p \{0\}, \times).$
- ▶ $(G,*) = (E(\mathbb{F}_p), +)$, where + is the elliptic curve addition that was defined in Mehdi's lecture.

For a finite group (G,*) we have a map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Examples:

▶ $g \in \mathbb{F}_p - \{0\}$, then $(x, g) \mapsto g^x$.

Suppose that (G, *) is a finite group. Examples:

- ► $(G,*) = (\mathbb{F}_p \{0\}, \times).$
- ▶ $(G,*) = (E(\mathbb{F}_p), +)$, where + is the elliptic curve addition that was defined in Mehdi's lecture.

For a finite group (G,*) we have a map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Examples:

- $g \in \mathbb{F}_p \{0\}$, then $(x, g) \mapsto g^x$.
- ▶ $P \in E(\mathbb{F}_p)$, then $(x, P) \mapsto xP$.

Suppose that (G, *) is a finite group. Examples:

- ► $(G,*) = (\mathbb{F}_p \{0\}, \times).$
- ▶ $(G,*) = (E(\mathbb{F}_p), +)$, where + is the elliptic curve addition that was defined in Mehdi's lecture.

For a finite group (G,*) we have a map

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Examples:

- $g \in \mathbb{F}_p \{0\}$, then $(x, g) \mapsto g^x$.
- ▶ $P \in E(\mathbb{F}_p)$, then $(x, P) \mapsto xP$.

For simplicity, for a finite group (G,*) and $x \in \mathbb{Z}$, we'll write g^x for $g * \cdots * g$.

For a finite group (G,*), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}_{x \text{ times}}$.

For a finite group (G,*), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}$.

x times

$$b \in \mathbb{Z}$$

For a finite group (G, *), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}$.

x times

$$b \in \mathbb{Z}$$

For a finite group (G, *), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = g * \cdots * g$.

x times

$$a \in \mathbb{Z}$$
$$(g^b)^a$$

$$g \in G$$

$$g^a \longrightarrow g^b \longleftarrow$$

$$b\in\mathbb{Z}$$
$$(g^a)^b$$

For a finite group (G,*), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}_{x \text{ times}}$.

$$b \in \mathbb{Z}$$
$$(g^a)^b$$

•
$$k = (g^a)^b = g^{a \cdot b} = g^{b \cdot a} = (g^b)^a$$
.

For a finite group (G, *), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}_{x \text{ times}}$.

- $k = (g^a)^b = g^{a \cdot b} = g^{b \cdot a} = (g^b)^a$.
- ► Computing a or b given g^a and g^b should be hard (i.e. slow).

For a finite group (G, *), if $g \in G$ and $x \in \mathbb{Z}$, we write $g^x = \underbrace{g * \cdots * g}$. x times

- $k = (g^a)^b = g^{a \cdot b} = g^{b \cdot a} = (g^b)^a.$
- \blacktriangleright Computing a or b given g^a and g^b should be hard (i.e. slow).
- \blacktriangleright Computing g^a given g and a should be easy (i.e. fast).

► Alice uses the knowledge that $13 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ to compute g^{13} .

1

- ► Alice uses the knowledge that $13 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ to compute g^{13} .
- ► An (naïve) ¹ attacker has to check g^a for a = 0, ..., 13, so has no shortcuts.

¹a smart attacker like Mehdi can often exploit the structure of the specific group to do better than this

- Alice uses the knowledge that $13 = 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ to compute g^{13} .
- ► An (naïve) ¹ attacker has to check g^a for a = 0, ..., 13, so has no shortcuts.
- ► Exercise: prove that, for any cyclic group G of size n, if $g \in G$ and $a \in \mathbb{Z}$, Alice can compute g^a in $\leq \log_2(n)$ (multiplication) steps. (In polynomial time).

¹a smart attacker like Mehdi can often exploit the structure of the specific group to do better than this (but even Mehdi can't manage polynomial time)

Quantum revolution

Let *G* be a finite group, let $g \in G$ and let $x \in \mathbb{Z}$. As before, define g^x by

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x := \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Alice can compute g^x in polynomial time.

Quantum revolution

Let *G* be a finite group, let $g \in G$ and let $x \in \mathbb{Z}$. As before, define g^x by

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x := \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Alice can compute g^x in polynomial time.

Given a quantum computer, Shor's algorithm computes x from g^x ...also in polynomial time.

Quantum revolution

Let *G* be a finite group, let $g \in G$ and let $x \in \mathbb{Z}$. As before, define g^x by

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x := \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

Alice can compute g^x in polynomial time.

Given a quantum computer, Shor's algorithm computes x from g^x ...also in polynomial time.

→ Idea:

Replace the map $\mathbb{Z} \times G \to G$ by a group action of a group H on a set S:

$$H \times S \rightarrow S$$
.

Cycles are compatible: [right, then left] = [left, then right], etc.

Cycles are compatible:

$$g^{13} = g^0$$

, etc.

Cycles are compatible:

 $o^{13} =$

 $g*g^0$

, etc.

Cycles are compatible:

$$g^{13} = g^4 * g * g^0$$

, etc.

Cycles are compatible:

$$g^{13} = g^8 * g^4 * g * g^0$$

Cycles are compatible: $g^{13} = g^8 * g^4 * g * g^0 =$

 Q^0

Cycles are compatible:

$$g^{13} = g^8 * g^4 * g * g^0 =$$

$$g^{8} * g^{0}$$

$$g^{13} = g^8 * g^4 * g * g^0 = g^4 * g^8 * g^0$$
, etc.

Cycles are compatible:

$$g^{13} = g^8 * g^4 * g * g^0 = g * g^4 * g^8 * g^0$$

$$g^{13} = g^8 * g^4 * g * g^0 = g * g^4 * g^8 * g^0 = g^0$$
, etc.

$$g^{13} = g^8 * g^4 * g * g^0 = g * g^4 * g^8 * g^0 = g^4 * g^0$$
, etc.

$$g^{13} = g^8 * g^4 * g * g^0 = g * g^4 * g^8 * g^0 = g * g^4 * g^0$$
, etc.

$$g^{13} = g^8 * g^4 * g * g^0 = g * g^4 * g^8 * g^0 = g^8 * g * g^4 * g^0$$
, etc.

Graphs of elliptic curves

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

Nodes: Supersingular elliptic curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Edges: 3-, 5-, and 7-isogenies (more details to come).

Recall from Mehdi's talk:

Recall from Mehdi's talk:

▶ Elliptic curves over \mathbb{F}_p can be thought of as curves of the form $E/\mathbb{F}_p: y^2 = f(x)$ with $\deg(f) = 3$ with a 'point at infinity'.

Recall from Mehdi's talk:

- ▶ Elliptic curves over \mathbb{F}_p can be thought of as curves of the form E/\mathbb{F}_p : $y^2 = f(x)$ with $\deg(f) = 3$ with a 'point at infinity'.
- ► There is a geometric group law called + on the rational points of *E*.

Recall from Mehdi's talk:

- ▶ Elliptic curves over \mathbb{F}_p can be thought of as curves of the form E/\mathbb{F}_p : $y^2 = f(x)$ with $\deg(f) = 3$ with a 'point at infinity'.
- ► There is a geometric group law called + on the rational points of *E*.
- ▶ The point at infinity P_{∞} is the identity of the group.

The group of rational points on *E* is

$$E(\mathbb{F}_p) = \{(x, y) \in \mathbb{F}_p^2 : y^2 = f(x)\} \cup \{P_\infty\}.$$

Example

Define
$$E/\mathbb{F}_5: y^2 = x^3 + 1$$
. Then

$$E(\mathbb{F}_5) = \{(0,1), (0,-1), (2,3), (2,-3), (-1,0), P_{\infty}\}.$$

- ► $E: y^2 = x^3 + 1$.
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1), \\ &(-1,0), (0,1), \\ &(2,-3), P_{\infty}\}. \end{split}$$

- ► $E: y^2 = x^3 + 1$.
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1), \\ &\quad (-1,0), (0,1), \\ &\quad (2,-3), P_{\infty}\}. \\ &= \{P \end{split}$$

- ► $E: y^2 = x^3 + 1$.
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1), \\ &\quad (-1,0), (0,1), \\ &\quad (2,-3), P_{\infty}\}. \\ &= \{P,2P, \end{split}$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1), \\ &\quad (-1,0), (0,1), \\ &\quad (2,-3), P_{\infty}\}. \\ &= \{P,2P, \end{split}$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1),$$

$$(-1,0), (0,1),$$

$$(2,-3), P_{\infty}\}.$$

$$= \{P, 2P,$$

$$3P,$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1),\\ &\quad (-1,0), (0,1),\\ &\quad (2,-3), P_\infty\}.\\ &= \{P,2P,\\ &\quad 3P, \end{split}$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1), \\ (-1,0), (0,1), \\ (2,-3), P_{\infty}\}.$$
$$= \{P, 2P, \\ 3P, 4P,$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1), \\ (-1,0), (0,1), \\ (2,-3), P_{\infty}\}.$$
$$= \{P, 2P, \\ 3P, 4P, \}$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1), \\ (-1,0), (0,1), \\ (2,-3), P_{\infty}\}.$$

$$= \{P, 2P, \\ 3P, 4P, \\ 5P,$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1), \\ (-1,0), (0,1), \\ (2,-3), P_{\infty}\}.$$
$$= \{P, 2P, \\ 3P, 4P, \\ 5P,$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$\begin{split} E(\mathbb{F}_5) &= \{(2,3), (0,-1),\\ &\quad (-1,0), (0,1),\\ &\quad (2,-3), P_\infty\}.\\ &= \{P,2P,\\ &\quad 3P,4P,\\ &\quad 5P,6P\}. \end{split}$$

- $E: y^2 = x^3 + 1.$
- ► Recall

$$E(\mathbb{F}_5) = \{(2,3), (0,-1), \\ (-1,0), (0,1), \\ (2,-3), P_{\infty}\}.$$

$$= \{P, 2P, \\ 3P, 4P, \\ 5P, 6P\}.$$

► $E(\mathbb{F}_5)$ is cyclic – $E(\mathbb{F}_5) \cong C_6$.

$$E/\mathbb{F}_5: y^2 = x^3 + 1$$
, then $E(\mathbb{F}_5) \cong C_6$.

Example

$$E/\mathbb{F}_5: y^2 = x^3 + 1$$
, then $E(\mathbb{F}_5) \cong C_6$.

Definition

An elliptic curve E defined over a finite prime field \mathbb{F}_p with $p \geq 5$ is supersingular if $\#E(\mathbb{F}_p) = p + 1$.

Example

$$E/\mathbb{F}_5: y^2 = x^3 + 1$$
, then $E(\mathbb{F}_5) \cong C_6$.

Definition

An elliptic curve E defined over a finite prime field \mathbb{F}_p with $p \geq 5$ is supersingular if $\#E(\mathbb{F}_p) = p + 1$.

Theorem

If E/\mathbb{F}_p *is supersingular and* $p \geq 5$ *then*

$$E(\mathbb{F}_p) \cong C_{p+1}$$
 or $E(\mathbb{F}_p) \cong C_2 \times C_{(p+1)/2}$.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

$$E/\mathbb{F}_5: y^2 = x^3 + 1$$
. Then $E(\mathbb{F}_p) \cong C_6$ and is generated by $P = (2,3)$.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point *P* is a point of order *n* if there is no positive m < n such that $mP = P_{\infty}$.

Example

 $E/\mathbb{F}_5: y^2 = x^3 + 1$. Then $E(\mathbb{F}_p) \cong C_6$ and is generated by P = (2,3).

 \blacktriangleright (2,3) is a 6-torsion point of order 6.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

Example

 $E/\mathbb{F}_5: y^2 = x^3 + 1$. Then $E(\mathbb{F}_p) \cong C_6$ and is generated by P = (2,3).

- \blacktriangleright (2,3) is a 6-torsion point of order 6.
- ► (-1,0) = 3(2,3) is a 6-torsion point and a 2-torsion point, and has order 2.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

Example

 E/\mathbb{F}_p supersingular and $p \geq 5$.

Then either

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

Example

 E/\mathbb{F}_p supersingular and $p \geq 5$.

Then either

▶ $E(\mathbb{F}_p) \cong C_{p+1}$; generated by a point P of order p+1, or

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

Example

 E/\mathbb{F}_p supersingular and $p \geq 5$.

Then either

- ▶ $E(\mathbb{F}_p) \cong C_{p+1}$; generated by a point *P* of order p+1, or
- ► $E(\mathbb{F}_p) \cong C_2 \times C_{(p+1)/2}$ and contains a point *P* of order (p+1)/2.

Definition

A point $P \in E(\mathbb{F}_p)$ is called a *n*-torsion point if $nP = P_{\infty}$. An *n*-torsion point P is a point of order n if there is no positive m < n such that $mP = P_{\infty}$.

Example

 E/\mathbb{F}_p supersingular and $p \geq 5$.

Then either

- ▶ $E(\mathbb{F}_p) \cong C_{p+1}$; generated by a point *P* of order p+1, or
- ► $E(\mathbb{F}_p) \cong C_2 \times C_{(p+1)/2}$ and contains a point *P* of order (p+1)/2.

In either case, if $\ell | (p+1)$ is an odd prime, then $\frac{p+1}{\ell}P$ is a point of order ℓ .

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Define
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$

[2]:
$$E_{51} \rightarrow E_{51}$$

 $(x,y) \mapsto 2 \cdot (x,y) := (x,y) + (x,y)$

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Example

Define
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$

[2]:
$$E_{51} \rightarrow E_{51}$$

 $(x,y) \mapsto 2 \cdot (x,y) := (x,y) + (x,y)$

As [2] is a morphism, it induces a morphism of groups $E(\mathbb{F}_{419}) \to E(\mathbb{F}_{419})$, i.e. [2](P+Q) = [2](P) + [2](Q).

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Define
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$

[2]:
$$E_{51} \rightarrow E_{51}$$

 $(x,y) \mapsto 2 \cdot (x,y) := (x,y) + (x,y)$

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Define
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$

[2]:
$$E_{51} \rightarrow E_{51}$$

 $(x,y) \mapsto 2 \cdot (x,y) := (x,y) + (x,y)$

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Example

Define
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$

[2]:
$$E_{51} \rightarrow E_{51}$$

 $(x,y) \mapsto 2 \cdot (x,y) := (x,y) + (x,y)$

▶ $[2](P_{\infty}) = P_{\infty} + P_{\infty} = P_{\infty}$. So [2] maps the group identity of E_{51} to the group identity of E_{51} .

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Example

► Exercise: show that

$$\begin{array}{cccc} [2]: & E_{51} & \to & E_{51} \\ & (x,y) & \mapsto & \left(\frac{\frac{1}{2}x^4 - 18x^3 - 163x^2 - 18x + \frac{1}{2}}{8x(x^2 + 9x + 1)}, \\ & & \frac{y(x^6 + 18x^5 + 5x^4 - 5x^2 - 18x - 1)}{(8x(x^2 + 9x + 1))^2}\right). \end{array}$$

Hint: Try to compute the rational maps using the group law from Mehdi's talk or see David's talk to learn how to compute the rational maps with Sage.

Definition

An isogeny of elliptic curves over \mathbb{F}_p is a non-zero morphism $E \to E'$ that maps the group identity of E to the group identity of E'. It is given by rational maps.

Example

Fact: let
$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$$
 and $E_9/\mathbb{F}_{419}: y^2 = x^3 + 9x^2 + x$ be elliptic curves. Then

$$f: E_{51} \to E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

is an isogeny.

$$f: E_{51} \to E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

Example

$$f: E_{51} \rightarrow E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

The kernel $\ker(f)$ is the set of points (x, y) that map to the group identity P_{∞} :

▶ If $(x, y) \in \ker(f)$ then $(x, y) = P_{\infty}$ or x = -118.

Example

$$f: E_{51} \to E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, \frac{y^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right).$$

The kernel $\ker(f)$ is the set of points (x, y) that map to the group identity P_{∞} :

- ▶ If $(x, y) \in \ker(f)$ then $(x, y) = P_{\infty}$ or x = -118.
- ▶ If $(-118, y) \in E_{51}$ then $(x, y) = (-118, \pm 51)$.

Example

$$f: E_{51} \rightarrow E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

The kernel $\ker(f)$ is the set of points (x, y) that map to the group identity P_{∞} :

- ▶ If $(x, y) \in \ker(f)$ then $(x, y) = P_{\infty}$ or x = -118.
- ► If $(-118, y) \in E_{51}$ then $(x, y) = (-118, \pm 51)$.
- ► $f(P_{\infty}) = f((-118, \pm 51)) = P_{\infty}$.

Fact: an isogeny is uniquely determined by its kernel.

$$f: E_{51} \to E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

Example

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

• $\ker(f) = \{(-118, 51), (-118, -51), P_{\infty}\}.$

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

- $\ker(f) = \{(-118, 51), (-118, -51), P_{\infty}\}.$
- ▶ $\ker(f)$ is a subgroup of $E_{51}(\mathbb{F}_{419})$ (because f induces a morphism of groups).

$$f: E_{51} \to E_{9}$$

$$(x,y) \mapsto \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, y^{\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}}\right).$$

- $\ker(f) = \{(-118, 51), (-118, -51), P_{\infty}\}.$
- ▶ $\ker(f)$ is a subgroup of $E_{51}(\mathbb{F}_{419})$ (because f induces a morphism of groups).
- ▶ $\ker(f)$ is order 3, so must be a cyclic group, hence $(-118,51) + (-118,51) + (-118,51) = P_{\infty}$.

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

Example

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

▶ $\ker(f)$ is a cyclic subgroup of $E_{51}(\mathbb{F}_{419})$, generated by a 3-torsion point P = (-118, 51).

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

- ▶ $\ker(f)$ is a cyclic subgroup of $E_{51}(\mathbb{F}_{419})$, generated by a 3-torsion point P = (-118, 51).
- ► $Q = (210, \sqrt{380}) \in E(\mathbb{F}_{419^2})$ is also a point of order 3.

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

- ▶ $\ker(f)$ is a cyclic subgroup of $E_{51}(\mathbb{F}_{419})$, generated by a 3-torsion point P = (-118, 51).
- ▶ $Q = (210, \sqrt{380}) \in E(\mathbb{F}_{419^2})$ is also a point of order 3.
- ► Then $f(Q) = (286, 107\sqrt{380})$ is a point of order 3 on E_9 .

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

- ▶ $\ker(f)$ is a cyclic subgroup of $E_{51}(\mathbb{F}_{419})$, generated by a 3-torsion point P = (-118, 51).
- ▶ $Q = (210, \sqrt{380}) \in E(\mathbb{F}_{419^2})$ is also a point of order 3.
- ► Then $f(Q) = (286, 107\sqrt{380})$ is a point of order 3 on E_9 .
- ► There is another 3-isogeny $g: E_9 \to E_{51}$ with cyclic kernel generated by f(Q).

$$\begin{array}{cccc} f: & E_{51} & \to & E_{9} \\ & (x,y) & \mapsto & \left(\frac{x^{3}-183x^{2}+73x+30}{(x+118)^{2}}, & & & \\ & & y\frac{x^{3}-65x^{2}-104x+174}{(x+118)^{3}}\right). \end{array}$$

- ▶ ker(f) is a cyclic subgroup of $E_{51}(\mathbb{F}_{419})$, generated by a 3-torsion point P = (-118, 51).
- ▶ $Q = (210, \sqrt{380}) \in E(\mathbb{F}_{419^2})$ is also a point of order 3.
- ► Then $f(Q) = (286, 107\sqrt{380})$ is a point of order 3 on E_9 .
- ► There is another 3-isogeny $g: E_9 \to E_{51}$ with cyclic kernel generated by f(Q).
- ▶ $g \circ f : E_{51} \to E_{51}$ is the multiplication-by-3 map.

Definition

Let $E, E'/\mathbb{F}_p$ be elliptic curves and let ℓ be a prime different from p. An ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

Definition

Let E/\mathbb{F}_p be an elliptic curve and let $\ell \neq p$ be prime. Let $f: E \to E'$ be an ℓ -isogeny.

Elliptic curves and isogenies

Definition

Let $E, E'/\mathbb{F}_p$ be elliptic curves and let ℓ be a prime different from p. An ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

Definition

Let E/\mathbb{F}_p be an elliptic curve and let $\ell \neq p$ be prime. Let $f: E \to E'$ be an ℓ -isogeny. Then there exists a unique (up to isomorphism) ℓ -isogeny $f^{\vee}: E' \to E$ such that $f^{\vee} \circ f$ is the multiplication-by- ℓ map on E.

Elliptic curves and isogenies

Definition

Let $E, E'/\mathbb{F}_p$ be elliptic curves and let ℓ be a prime different from p. An ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

Definition

Let E/\mathbb{F}_p be an elliptic curve and let $\ell \neq p$ be prime. Let $f: E \to E'$ be an ℓ -isogeny. Then there exists a unique (up to isomorphism) ℓ -isogeny $f^{\vee}: E' \to E$ such that $f^{\vee} \circ f$ is the multiplication-by- ℓ map on E. This is called the dual isogeny.

Example

$$E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x \text{ and } E_9/\mathbb{F}_{419}: y^2 = x^3 + 9x^2 + x.$$

Elliptic curves and isogenies

Definition

Let $E, E'/\mathbb{F}_p$ be elliptic curves and let ℓ be a prime different from p. An ℓ -isogeny $f: E \to E'$ is an isogeny with $\# \ker(f) = \ell$.

Definition

Let E/\mathbb{F}_p be an elliptic curve and let $\ell \neq p$ be prime. Let $f: E \to E'$ be an ℓ -isogeny. Then there exists a unique (up to isomorphism) ℓ -isogeny $f^{\vee}: E' \to E$ such that $f^{\vee} \circ f$ is the multiplication-by- ℓ map on E. This is called the dual isogeny.

Example

 $E_{51}/\mathbb{F}_{419}: y^2 = x^3 + 51x^2 + x$ and $E_9/\mathbb{F}_{419}: y^2 = x^3 + 9x^2 + x$. The dual of the 3-isogeny $f: E_{51} \to E_9$ with kernel generated by (-118, 51) is the 3-isogeny $f^{\vee}: E_9 \to E_{51}$ with kernel generated by $(286, 107\sqrt{380})$.

Graph of 3-isogenies over \mathbb{F}_{419} .

Example

Graph of 3-isogenies over \mathbb{F}_{419} .

Example

Definition

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

Definition

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

Definition

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

Definition

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

Definition

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

Definition

Let p and ℓ be distinct primes. The isogeny graph G_{ℓ} over \mathbb{F}_p has

- ▶ Nodes: elliptic curves defined over \mathbb{F}_p with a given number of points (up to \mathbb{F}_p -isomorphism).
- ▶ Edges: an edge E E' respresents an ℓ -isogeny $E \to E'$ defined over \mathbb{F}_p together with its dual isogeny.

► Generally, the G_ℓ look something like

► Our graphs are cycles because all the curves have 'the same endomorphisms'

► Our graphs are cycles because all the curves have 'the same endomorphisms'

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$.

Our graphs are cycles because all the curves have 'the same endomorphisms'

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$.

Example

▶ For any $n \in \mathbb{Z}$, the map

$$[n]: E \to E (x,y) \mapsto n(x,y).$$

► Our graphs are cycles because all the curves have 'the same endomorphisms'

Definition

An endomorphism of an elliptic curve *E* is a morphism $E \rightarrow E$.

Example

▶ For any $n \in \mathbb{Z}$, the map

$$[n]: E \to E$$
$$(x,y) \mapsto n(x,y).$$

▶ For E/\mathbb{F}_p , the Frobenius map

$$\pi: \quad E \quad \to \quad E$$
$$(x,y) \quad \mapsto \quad (x^p, y^p).$$

Let E/\mathbb{F}_p be supersingular.

▶ Applying the Frobenius endomorphism $(x, y) \mapsto (x^p, y^p)$ twice results in the multiplication by -p map [-p].

Let E/\mathbb{F}_p be supersingular.

- ▶ Applying the Frobenius endomorphism $(x, y) \mapsto (x^p, y^p)$ twice results in the multiplication by -p map [-p].
- ► The set of \mathbb{F}_p -rational endomorphisms of a curve E/\mathbb{F}_p forms a ring $\operatorname{End}_{\mathbb{F}_p}(E)$.

Let E/\mathbb{F}_p be supersingular.

- ▶ Applying the Frobenius endomorphism $(x, y) \mapsto (x^p, y^p)$ twice results in the multiplication by -p map [-p].
- ► The set of \mathbb{F}_p -rational endomorphisms of a curve E/\mathbb{F}_p forms a ring $\operatorname{End}_{\mathbb{F}_p}(E)$.
- ► We can define a ring homomorphism

$$\begin{array}{ccc} \mathbb{Z}[\sqrt{-p}] & \to & \operatorname{End}_{\mathbb{F}_p}(E) \\ n & \mapsto & [n] \\ \sqrt{-p} & \mapsto & \pi. \end{array}$$

Let E/\mathbb{F}_p be supersingular.

- ▶ Applying the Frobenius endomorphism $(x, y) \mapsto (x^p, y^p)$ twice results in the multiplication by -p map [-p].
- ► The set of \mathbb{F}_p -rational endomorphisms of a curve E/\mathbb{F}_p forms a ring $\operatorname{End}_{\mathbb{F}_p}(E)$.
- We can define a ring homomorphism

$$\begin{array}{ccc} \mathbb{Z}[\sqrt{-p}] & \to & \operatorname{End}_{\mathbb{F}_p}(E) \\ n & \mapsto & [n] \\ \sqrt{-p} & \mapsto & \pi. \end{array}$$

► Fact: if $p \equiv 3 \pmod{8}$, $p \ge 5$, and $E_A/\mathbb{F}_p : y^2 = x^3 + Ax^2 + x$ is supersingular, then $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\sqrt{-p}]$.

Remember: we wanted to replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x := \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S$$
.

Remember: we wanted to replace exponentiation

$$\begin{array}{ccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x := \underbrace{g * \cdots * g}_{x \text{ times}}. \end{array}$$

by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S$$
.

Now we can do it!

Definition

An action of a group (H, \cdot) on a set S is a map

$$\begin{array}{ccc} H \times S & \rightarrow & S \\ (h,s) & \mapsto & h * s \end{array}$$

such that id *s = s and $h_1 * (h_2 * s) = (h_1 \cdot h_2) * s$ for all $s \in S$ and all $h_1, h_2 \in H$.

Definition

An action of a group (H, \cdot) on a set S is a map

$$\begin{array}{ccc} H \times S & \to & S \\ (h,s) & \mapsto & h * s \end{array}$$

such that id *s = s and $h_1 * (h_2 * s) = (h_1 \cdot h_2) * s$ for all $s \in S$ and all $h_1, h_2 \in H$.

Example

Traditional Diffie-Hellman is an example:

$$(H, \cdot) = ((\mathbb{Z}/(p-1)\mathbb{Z})^*, +)$$
 and $S = (\mathbb{Z}/p\mathbb{Z})^*$. Exponentiation $(h, s) \mapsto s^h$ is a group action.

Definition

An action of a group (H, \cdot) on a set S is a map

$$\begin{array}{ccc} H \times S & \to & S \\ (h,s) & \mapsto & h * s \end{array}$$

such that id *s = s and $h_1 * (h_2 * s) = (h_1 \cdot h_2) * s$ for all $s \in S$ and all $h_1, h_2 \in H$.

For the CSIDH group action

- ▶ the set *S* is the set of supersingular $E_A/\mathbb{F}_p: y^2 = x^3 + Ax^2 + x$ with $p \equiv 3 \pmod{8}$ and $p \geq 5$.
- ▶ the group *H* is the class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$.

Let
$$\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$$
.

Definition

An ideal $I \subset \mathcal{O}$ is the set of all \mathcal{O} -linear combinations of a given set of elements of \mathcal{O} .

Let
$$\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$$
.

Definition

An ideal $I \subset \mathcal{O}$ is the set of all \mathcal{O} -linear combinations of a given set of elements of \mathcal{O} .

Example

In $\mathbb{Z}[\sqrt{-3}]$ we can consider the ideal

$$\langle 7, 2 + \sqrt{-3} \rangle := \{7a + (2 + \sqrt{-3})b : a, b \in \mathbb{Z}[\sqrt{-3}]\}.$$

Let
$$\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$$
.

Definition

An ideal $I \subset \mathcal{O}$ is the set of all \mathcal{O} -linear combinations of a given set of elements of \mathcal{O} .

Example

In $\mathbb{Z}[\sqrt{-3}]$ we can consider the ideal

$$\langle 7, 2 + \sqrt{-3} \rangle := \{7a + (2 + \sqrt{-3})b : a, b \in \mathbb{Z}[\sqrt{-3}]\}.$$

Definition

A principal ideal is an ideal of the form $I = \langle \alpha \rangle$.

Let
$$\mathcal{O} = \mathbb{Z}[\sqrt{-p}]$$
.

Definition

An ideal $I \subset \mathcal{O}$ is the set of all \mathcal{O} -linear combinations of a given set of elements of \mathcal{O} .

Example

In $\mathbb{Z}[\sqrt{-3}]$ we can consider the ideal

$$\langle 7, 2 + \sqrt{-3} \rangle := \{7a + (2 + \sqrt{-3})b : a, b \in \mathbb{Z}[\sqrt{-3}]\}.$$

Definition

A principal ideal is an ideal of the form $I = \langle \alpha \rangle$.

▶ We can multiply ideals *I* and $J \subset \mathcal{O}$:

$$I \cdot J = \langle \alpha \beta : \alpha \in I, \beta \in J \rangle.$$

Definition

Two ideals $I, J \subseteq \mathcal{O}$ are equivalent if there exist $\alpha, \beta \in \mathcal{O} \setminus \{0\}$ such that

$$\langle \alpha \rangle \cdot I = \langle \beta \rangle \cdot J.$$

²modulo details

Definition

Two ideals $I, J \subseteq \mathcal{O}$ are equivalent if there exist $\alpha, \beta \in \mathcal{O} \setminus \{0\}$ such that

$$\langle \alpha \rangle \cdot I = \langle \beta \rangle \cdot J.$$

Definition

The ideal class group of \mathcal{O} is²

 $Cl(\mathcal{O}) = \{\text{equivalence classes of nonzero ideals } I \subset \mathcal{O}\}.$

²modulo details

Definition

Two ideals $I, J \subseteq \mathcal{O}$ are equivalent if there exist $\alpha, \beta \in \mathcal{O} \setminus \{0\}$ such that

$$\langle \alpha \rangle \cdot I = \langle \beta \rangle \cdot J.$$

Definition

The ideal class group of \mathcal{O} is²

 $Cl(\mathcal{O}) = \{\text{equivalence classes of nonzero ideals } I \subset \mathcal{O}\}.$

Miracle fact: the ideal class group is a group!

²modulo details

The class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$ acts on the set S of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2=x^3+Ax^2+x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$.

The class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$ acts on the set S of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2=x^3+Ax^2+x$ with $p \equiv 3 \pmod 8$ and $p \ge 5$. How?

► Recall: An isogeny is uniquely determined by its kernel.

The class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$ acts on the set S of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2=x^3+Ax^2+x$ with $p\equiv 3\pmod 8$ and $p\geq 5$. How?

- ► Recall: An isogeny is uniquely determined by its kernel.
- ▶ Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E)$ be an ideal. Then

$$H_I = \cap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

The class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$ acts on the set S of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2=x^3+Ax^2+x$ with $p\equiv 3\pmod 8$ and $p\geq 5$. How?

- ► Recall: An isogeny is uniquely determined by its kernel.
- ▶ Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E)$ be an ideal. Then

$$H_I = \cap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

▶ Define $f_I : E \to E'$ to be the isogeny with kernel H_I .

The class group of the endomorphism ring $\mathbb{Z}[\sqrt{-p}]$ acts on the set S of supersingular elliptic curves $E_A/\mathbb{F}_p: y^2=x^3+Ax^2+x$ with $p\equiv 3\pmod 8$ and $p\geq 5$. How?

- ► Recall: An isogeny is uniquely determined by its kernel.
- ▶ Let $I \subset \operatorname{End}_{\mathbb{F}_p}(E)$ be an ideal. Then

$$H_I = \cap_{\alpha \in I} \ker(\alpha)$$

is a subgroup of $E(\overline{\mathbb{F}_p})$.

▶ Define $f_I : E \to E'$ to be the isogeny with kernel H_I .

The CSIDH group action is:

$$Cl(End_{\mathbb{F}_p}(E)) \times S \rightarrow S$$

 $(I, E) \mapsto f_I(E).$

The CSIDH group action is:

$$Cl(End_{\mathbb{F}_p}(E)) \times S \rightarrow S$$

 $(I, E) \mapsto I * E := f_I(E).$

The CSIDH group action is:

$$Cl(End_{\mathbb{F}_p}(E)) \times S \rightarrow S$$

 $(I, E) \mapsto I * E := f_I(E).$

▶ The isogeny f_I is an ℓ -isogeny if and only if $I = \langle [\ell], \pi \pm [1] \rangle$.

The CSIDH group action is:

$$Cl(End_{\mathbb{F}_p}(E)) \times S \rightarrow S$$

 $(I, E) \mapsto I * E := f_I(E).$

- ▶ The isogeny f_I is an ℓ -isogeny if and only if $I = \langle [\ell], \pi \pm [1] \rangle$.
- ► A '+' direction isogeny on the ℓ -isogeny graph is the action of $\langle [\ell], \pi [1] \rangle$.

The CSIDH group action is:

$$Cl(End_{\mathbb{F}_p}(E)) \times S \rightarrow S$$

 $(I, E) \mapsto I * E := f_I(E).$

- ▶ The isogeny f_I is an ℓ -isogeny if and only if $I = \langle [\ell], \pi \pm [1] \rangle$.
- ► A '+' direction isogeny on the ℓ -isogeny graph is the action of $\langle [\ell], \pi [1] \rangle$.
- ▶ A '-' direction isogeny on the ℓ -isogeny graph is the action of $\langle [\ell], \pi + [1] \rangle$.

Alice
$$a = [+, -, +, -]$$

Bob
$$b = [+, +, -, +]$$

Alice
$$a = [+, -, +, -]$$

$$b = \begin{bmatrix} +, +, -, + \end{bmatrix}$$

$$E_{158} = \langle 3, \pi - 1 \rangle * E_0 \quad E_{199} = \langle 7, \pi - 1 \rangle * E_0$$

Alice
$$a = [+, -, +, -]$$

$$b = \begin{bmatrix} +, +, -, + \end{bmatrix}$$

$$E_{15} = \langle 5, \pi + 1 \rangle * E_{158} \quad E_{40} = \langle 5, \pi - 1 \rangle * E_{199}$$

Alice
$$a = [+, -, +, -]$$

$$b = \begin{bmatrix} +, +, -, + \end{bmatrix}$$

$$E_{15} = \langle 3, \pi - 1 \rangle * E_{51}$$
 $E_{295} = \langle 3, \pi + 1 \rangle * E_{40}$

Alice
$$a = [+, -, +, \frac{-}{}]$$

Bob
$$b = [+, +, -, +]$$

$$E_{199} = \langle 7, \pi + 1 \rangle * E_{51}$$
 $E_{158} = \langle 7, \pi - 1 \rangle * E_{295}$

(exchange of public keys)

Alice
$$a = [+, -, +, -]$$

$$b = \begin{bmatrix} +, +, -, + \end{bmatrix}$$

$$E_{410} = \langle 3, \pi - 1 \rangle * E_{158} \quad E_{51} = \langle 7, \pi - 1 \rangle * E_{199}$$

Alice
$$a = [+, -, +, -]$$

$$E_{51} = \langle 5, \pi + 1 \rangle * E_{410} \quad E_{410} = \langle 5, \pi - 1 \rangle * E_{51}$$

Alice
$$a = [+, -, +, -]$$

$$b = \begin{bmatrix} +, +, -, + \end{bmatrix}$$

$$E_9 = \langle 3, \pi - 1 \rangle * E_{51}$$
 $E_{158} = \langle 3, \pi + 1 \rangle * E_{410}$

Alice
$$a = [+, -, +, \frac{-}{}]$$

Bob
$$b = [+, +, -, +]$$

$$E_{390} = \langle 7, \pi + 1 \rangle * E_9 \quad E_{390} = \langle 7, \pi - 1 \rangle * E_{158}$$

Alice
$$a = [+, -, +, -]$$

Bob
$$b = [+, +, -, +]$$

(shared secret key is E_{390})

▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.
- ► Then E_0 is supersingular.

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.
- ▶ Then E_0 is supersingular. Exercise: show that there is a point of order ℓ_i in $E_0(\mathbb{F}_p)$ for every ℓ_1, \ldots, ℓ_n .

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.
- ▶ Then E_0 is supersingular. Exercise: show that there is a point of order ℓ_i in $E_0(\mathbb{F}_p)$ for every ℓ_1, \ldots, ℓ_n .
- ▶ All arithmetic for computing ℓ_i -isogenies is now over \mathbb{F}_p . (For more: see David's talk).

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.
- ▶ Then E_0 is supersingular. Exercise: show that there is a point of order ℓ_i in $E_0(\mathbb{F}_p)$ for every ℓ_1, \ldots, ℓ_n .
- ▶ All arithmetic for computing ℓ_i -isogenies is now over \mathbb{F}_p . (For more: see David's talk).
- ▶ Every G_{ℓ_i} containing E_0 is a disjoint union of cycles.

- ▶ Choose small odd primes ℓ_1, \ldots, ℓ_n .
- ▶ Make sure $p = 4 \cdot \ell_1 \cdots \ell_n 1$ is prime.
- ► Fix $E_0/\mathbb{F}_p : y^2 = x^3 + x$.
- ▶ Then E_0 is supersingular. Exercise: show that there is a point of order ℓ_i in $E_0(\mathbb{F}_p)$ for every ℓ_1, \ldots, ℓ_n .
- ▶ All arithmetic for computing ℓ_i -isogenies is now over \mathbb{F}_p . (For more: see David's talk).
- ▶ Every G_{ℓ_i} containing E_0 is a disjoint union of cycles.
- ► Every node of G_{ℓ_i} is of the form $E_A : y^2 = x^3 + Ax^2 + x -$ can be compressed to just $A \in \mathbb{F}_p$ giving tiny keys.

► Drop-in post-quantum replacement for (EC)DH

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (for reasonable run-time)

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (for reasonable run-time)
- ► Small keys: 64 bytes at conjectured AES-128 security level

- ► Drop-in post-quantum replacement for (EC)DH
- Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (for reasonable run-time)
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange

- ► Drop-in post-quantum replacement for (EC)DH
- ► Non-interactive key exchange (full public-key validation); previously an open problem post-quantumly (for reasonable run-time)
- ► Small keys: 64 bytes at conjectured AES-128 security level
- ► Competitive speed: ~ 85 ms for a full key exchange
- ► Flexible: compatible with 0-RTT protocols such as QUIC; recent preprint uses CSIDH for 'SeaSign' signatures

Work in progress & future work

► Fast, constant-time implementation. For constant-time ideas, see [BLMP].

Work in progress & future work

- ► Fast, constant-time implementation. For constant-time ideas, see [BLMP].
- ► More applications.

Work in progress & future work

- ► Fast, constant-time implementation. For constant-time ideas, see [BLMP].
- ► More applications.
- ► [Your paper here!]

References

Mentioned in this talk:

- Castryck, Lange, Martindale, Panny, Renes:
 CSIDH: An Efficient Post-Quantum Commutative Group Action
 https://ia.cr/2018/383 (to appear at ASIACRYPT 2018)
- ► [BLMP] Bernstein, Lange, Martindale, Panny:

 Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies https://eprint.iacr.org/2018/1059
- ► De Feo, Galbraith:

 SeaSign: Compact isogeny signatures from class group actions

 https://ia.cr/2018/824

Credits should also go to Lorenz Panny - many of the slides from this presentation are from a joint presentation with Lorenz at the Crypto Working Group in Utrecht, the Netherlands. He made all the beautiful pictures! Also credits to Wouter Castryck, whose slides were a source of inspiration for this presentation.

References

Other related work:

- Biasse, Iezzi, Jacobson: A note on the security of CSIDH https://arxiv.org/pdf/1806.03656 (to appear at Indocrypt 2018)
- ► Bonnetain, Schrottenloher:

 Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes³

 https://ia.cr/2018/537
- Childs, Jao, Soukharev: Constructing elliptic curve isogenies in quantum subexponential time https://arxiv.org/abs/1012.4019
- ▶ Delfs, Galbraith: Computing isogenies between supersingular elliptic curves over \mathbb{F}_p https://arxiv.org/abs/1310.7789
- De Feo, Kieffer, Smith: Towards practical key exchange from ordinary isogeny graphs https://ia.cr/2018/485 (to appear at ASIACRYPT 2018)
- ► Jao, LeGrow, Leonardi, Ruiz-Lopez: A polynomial quantum space attack on CRS and CSIDH (to appear at MathCrypt 2018)
- Meyer, Reith: A faster way to the CSIDH https://ia.cr/2018/782 (to appear at Indocrypt 2018)

³Concrete numbers in this paper should be treated with caution, see [Section 1.3, BLMP]

Parameters

CSIDH-log p	intended NIST level	public key size	private key size	time (full exchange)	cycles (full exchange)	stack memory	classical security	
CSIDH-512	1	64 b	32 b	85 ms	212e6	4368 b	128	
CSIDH-1024	3	128 b	64 b				256	
CSIDH-1792	5	224 b	112 b				448	