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Definition
Let E be an elliptic curve over a finite field F,;. An endomorphism
of E is a morphism E — E.

Examples

> The g-power Frobenius morphism.

E —

E
P P where n € Z.

v

The endomorphisms of E form a ring, called the
endomorphism ring of E, written as End(E).
To find: E/Fq such that = € End(E), where

Xrg(X) = X2 = tX + g = (X — 7)(X — 7).

v
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All such E will satisfy Z[r] C End(E).
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Counting points on elliptic curves over finite fields

Suppose that 7 is a complex (non-real) root of
Xrg(X) = X? — tX + q. Then
» K = Q(n) is an imaginary quadratic number field.
» Z[r] € Ok (the ring of integers of K).

Strategy: construct elliptic curves E /Fg such that End(E) = Ok.
To recap, we then get

1.
2.
3.

Z|m] € Ok = End(E)
7w € End(E)

7 defines a morphism of E with trace 7 +7 = t (the g-power
Frobenius morphism)

CHE(F)=1—t+q.
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Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E/IFq such that End(E) = Ok.

Definition
The class polynomial for K is defined to be

He(X)= I  xX-i(E) ezX]
E/C:End(E)=0k

» This polynomial has integral coefficients!

» The roots of Hx(X) mod g are the j-invariants of all the
elliptic curves E/Fq such that End(E) = Ok.

» There is an algorithm to enumerate all the elliptic curves with
1 — t + g points given those with endomorphism ring Ok.



Genus 2 curves
> A genus 2 curve C over a finite field Fq, with g odd, has a
hyperelliptic model
_)/2 = f(X) € IE?CI[X]’
where deg(f) =5 or 6.
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The group law for genus 2 curves

We define a group law on genus 2 curves with pairs of points.
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The group law for genus 2 curves

First we define the inverse of {A, B}: —{A, B} = {—-A, —B}.
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The group law for genus 2 curves

Suppose we have another pair of points {C,D}:
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The group law for genus 2 curves

Draw the unique cubic passing through A, B, C, D:
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The group law for genus 2 curves

We define {A, B} + {C,D} +{E,F} =0.
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The Frobenius for genus 2 curves

Definition
Let C be a genus 2 curve over a finite field Fq. The g-power
Frobenius morphism on Jac(C) is defined to be

g1 Jac(C) — Jac(C)
P =  PA.

Recall:

» The characteristic polynomial of the Frobenius morphism on a
genus 2 curve C is of the form

Xmg(X) = X* —tX3® + (29 + s)X? — tgX + ¢°.

» #C(Fg)=1-t+q
» #Jac(C)(Fy) =1—t+2q+s—tqg+q°
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of E is defined to be a morphism E — E.

Examples
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Endomorphisms for genus 2 curves

Definition
Let C be a genus 2 curve over a finite field Fq. An endomorphism
of Jac(C) is defined to be a morphism Jac(C) — Jac(C).

Examples

» The g-power Frobenius morphism.
Jac(C) — Jac(C)

p . nP, where n € Z.

v

The endomorphisms of Jac(C) form a ring, called the
endomorphism ring of Jac(C), written as End(Jac(C)).
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Counting points on genus 2 curves over finite fields

Suppose that 7 is a complex (non-real) root of
Xrg(X) = X = tX3 4+ (29 + 5)X? — tgX + ¢*. Then
» K = Q(n) is a totally imaginary quadratic extension of a real
quadratic number field.
» Z[m, 7] C Ok (the ring of integers of K).
Strategy: construct genus 2 curves C /I, such that
End(Jac(C)) = Ok. To recap, we then get
1. Z|m, 7] € Ok = End(Jac(C))
2. 7,7 € End(Jac(C))

3. 7 defines a morphism of Jac(C) with characteristic polynomial
Xrq(X) (the g-power Frobenius morphism)

. H#C(Fy)=1—-t+gq
. #Jac(C)(Fg) =1—t+2g+s—tq+ q>

(G2 RN



Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E /Fgq such that End(E) = Ok.

Definition
The class polynomial for K is defined to be

HeX)= I  (X—i(E)ezX]
E/C:End(E)=0xk

» This polynomial has integral coefficients!

» The roots of Hk(X) mod g are the j-invariants of all the
elliptic curves E/FFq such that End(E) = Ok.

> There is an algorithm to find all the elliptic curves with

1 — t + g points given all the elliptic curves with
endomorphism ring Ok.
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Interlude: Invariants of genus 2 curves

» The Igusa invariants
i1, i, i3 {C/k : C a genus 2 curve} — k

are functions of the coefficients of C.
» The triple (i1(C), (C), 3(C)) determines Jac(C) up to
isomorphism.

» Mestre's algorithm computes C given (i1(C), i(C), i3(C)).



Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C/IF, such that
End(Jac(C)) = Ok.

Definition

The class polynomial for K is defined to be

He(X)= ]  (X—i(E) €z[X].
E/C:End(E)=0k

» This polynomial has integral coefficients!

» The roots of Hik(X) mod q are the j-invariants of all the
elliptic curves E/Fq such that End(E) = Ok.

» There is an algorithm to find all the elliptic curves with

1 — t 4+ g points given all the elliptic curves with
endomorphism ring Ok.



Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C/IF, such that
End(Jac(C)) = O.

Definition

The class polynomials for K are defined to be

Hk1(X) = 11 (X —ii(C)) € C[X],
{C/C:End(Jac(C))=0k} )~

Hic2(X) = 11 (X —i(C)) € C[X],
{C/C:End(Jac(C))=0k}

Hi 3(X) = 1T (X —i3(C)) € CIX].
{C/C:End(Jac(C))=Ox} /o



Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C/IF, such that
End(Jac(C)) = Ok.

Definition

The class polynomials for K are defined to be

Hi n(X) = 11 (X —i,(C)) € C[X],
{C/C:End(Jac(C))=0Ok} =

forn=1,2,3.

» This polynomial has integral coefficients!
» The roots of Hk(X) mod g are the j-invariants of all the
elliptic curves E/F, such that End(E) = Ok.

» There is an algorithm to find all the elliptic curves with
1 — t 4 g points given all the elliptic curves with
endomorphism ring Ok.
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Constructing genus 2 curves with a given number of points
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» These polynomials have integral coefficients!

» The roots of Hy n(X) mod q are the n*" lgusa invariants i,(C)
of all the genus 2 curves C/IF, such that End(Jac(C)) = Ok.

» We give an algorithm to construct many more genus 2 curves
with 1 — t + g points given all the genus 2 curves with
endomorphism ring Ok.
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Future work:

» Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

» For this, we have to find an elliptic curve E/F, such that
#E(Fp) has a prime factor r of given magnitude, and

k=min{ne Z:r|p" —1}

is prescribed.

» | hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Thank you!
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