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Reminder: Elliptic Curves over finite fields

Definition
Let E be an elliptic curve over a finite field Fq. The q-power
Frobenius morphism on E is defined to be

πq : E −→ E
P 7→ Pq.

I The characteristic polynomial of the Frobenius morphism is of
the form

χπq(X ) = X 2 − tX + q.

I We call t the trace of Frobenius.

I #E (Fq) = 1− t + q
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Endomorphisms of elliptic curves over finite fields

Definition
Let E be an elliptic curve over a finite field Fq. An endomorphism
of E is a morphism E → E .

Examples

I The q-power Frobenius morphism.

I
E −→ E
P 7→ nP,

where n ∈ Z.

I The endomorphisms of E form a ring, called the
endomorphism ring of E , written as End(E ).

I To find: E/Fq such that π ∈ End(E ), where

χπq(X ) = X 2 − tX + q = (X − π)(X − π).

I All such E will satisfy Z[π] ⊆ End(E ).
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Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 2 − tX + q.

Then

I K = Q(π) is an imaginary quadratic number field.

I Z[π] ⊆ OK (the ring of integers of K ).

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .
To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.
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Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .

Definition
The class polynomial for K is defined to be

HK (X ) =
∏

E/C:End(E)=OK

(X − j(E )) ∈ Z[X ].

I This polynomial has integral coefficients!

I The roots of HK (X ) mod q are the j-invariants of all the
elliptic curves E/Fq such that End(E ) = OK .

I There is an algorithm to enumerate all the elliptic curves with
1− t + q points given those with endomorphism ring OK .
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Genus 2 curves

I A genus 2 curve C over a finite field Fq, with q odd, has a
hyperelliptic model

y2 = f (x) ∈ Fq[x ],

where deg(f ) = 5 or 6.



The group law for genus 2 curves

We define a group law on genus 2 curves with pairs of points.
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First we define the inverse of {A,B}:



The group law for genus 2 curves

First we define the inverse of {A,B}: −{A,B} = {−A,−B}.



The group law for genus 2 curves

Suppose we have another pair of points {C ,D}:



The group law for genus 2 curves

Draw the unique cubic passing through A,B,C ,D:



The group law for genus 2 curves

We define {A,B}+ {C ,D}+ {E ,F} = 0.



The Frobenius for genus 2 curves

I Via this group law we can associate an abelian variety to a
genus 2 curve C , called the Jacobian of C, or just Jac(C ).

I Think of points P ∈ Jac(C ) as pairs of points {A,B} on C .

Recall:

Definition
Let E be an elliptic curve over a finite field Fq. The q-power
Frobenius morphism on E is defined to be

πq : E −→ E
P 7→ Pq.
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Endomorphisms of Elliptic Curves

Definition
Let E be an elliptic curve over a finite field Fq. An endomorphism
of E is defined to be a morphism E → E .

Examples

I The q-power Frobenius morphism.
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Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 2 − tX + q. Then

I K = Q(π) is an imaginary quadratic number field.

I Z[π] ⊆ OK (the ring of integers of K ).

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .
To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is an imaginary quadratic number field.

I Z[π] ⊆ OK (the ring of integers of K ).

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .
To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π] ⊆ OK (the ring of integers of K ).

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .
To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .
To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK . To recap, we then get

1. Z[π] ⊆ OK = End(E )

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK . To recap, we then get

1. Z[π, π] ⊆ OK = End(Jac(C ))

2. π ∈ End(E )

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK . To recap, we then get

1. Z[π, π] ⊆ OK = End(Jac(C ))

2. π, π ∈ End(Jac(C ))

3. π defines a morphism of E with trace π + π = t (the q-power
Frobenius morphism)

4. #E (Fq) = 1− t + q.



Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK . To recap, we then get

1. Z[π, π] ⊆ OK = End(Jac(C ))

2. π, π ∈ End(Jac(C ))

3. π defines a morphism of Jac(C ) with characteristic polynomial
χπq(X ) (the q-power Frobenius morphism)

4. #E (Fq) = 1− t + q
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Suppose that π is a complex (non-real) root of
χπq(X ) = X 4 − tX 3 + (2q + s)X 2 − tqX + q2. Then

I K = Q(π) is a totally imaginary quadratic extension of a real
quadratic number field.

I Z[π, π] ⊆ OK (the ring of integers of K ).

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK . To recap, we then get

1. Z[π, π] ⊆ OK = End(Jac(C ))

2. π, π ∈ End(Jac(C ))

3. π defines a morphism of Jac(C ) with characteristic polynomial
χπq(X ) (the q-power Frobenius morphism)

4. #C (Fq) = 1− t + q

5. #Jac(C )(Fq) = 1− t + 2q + s − tq + q2.



Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E/Fq such that End(E ) = OK .

Definition
The class polynomial for K is defined to be

HK (X ) =
∏

E/C:End(E)=OK

(X − j(E )) ∈ Z[X ].

I This polynomial has integral coefficients!

I The roots of HK (X ) mod q are the j-invariants of all the
elliptic curves E/Fq such that End(E ) = OK .

I There is an algorithm to find all the elliptic curves with
1− t + q points given all the elliptic curves with
endomorphism ring OK .



Interlude: Invariants of genus 2 curves

I The Igusa invariants

i1, i2, i3 : {C/k : C a genus 2 curve} −→ k

are functions of the coefficients of C .

I The triple (i1(C ), i2(C ), i3(C )) determines Jac(C ) up to
isomorphism.

I Mestre’s algorithm computes C given (i1(C ), i2(C ), i3(C )).
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Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK .

Definition
The class polynomials for K are defined to be

HK ,n(X ) =
∏

{C/C:End(Jac(C))=OK}/∼=

(X − in(C )) ∈ C[X ],

for n = 1, 2, 3.

I This polynomial has integral coefficients!

I The roots of HK (X ) mod q are the j-invariants of all the
elliptic curves E/Fq such that End(E ) = OK .

I There is an algorithm to find all the elliptic curves with
1− t + q points given all the elliptic curves with
endomorphism ring OK .
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Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C/Fq such that
End(Jac(C )) = OK .

Definition
The class polynomials for K are defined to be

HK ,n(X ) =
∏

{C/C:End(Jac(C))=OK}/∼=

(X − in(C )) ∈ Z[X ],

for n = 1, 2, 3.

I These polynomials have integral coefficients!

I The roots of HK ,n(X ) mod q are the nth Igusa invariants in(C )
of all the genus 2 curves C/Fq such that End(Jac(C )) = OK .

I We give an algorithm to construct many more genus 2 curves
with 1− t + q points given all the genus 2 curves with
endomorphism ring OK .



Our contributions

I We give a new algorithm to compute the class polynomials for
genus 2 curves that mimics the current state-of-the-art for
genus 1.

I The techniques in my thesis allow us to construct many more
genus 2 curves Fq with N = 1− t + q points than just those
with maximal endomorphism ring.

Future work:

I Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

I For this, we have to find an elliptic curve E/Fp such that
#E (Fp) has a prime factor r of given magnitude, and

k = min{n ∈ Z : r |pn − 1}

is prescribed.

I I hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Our contributions

I We give a new algorithm to compute the class polynomials for
genus 2 curves that mimics the current state-of-the-art for
genus 1.

I The techniques in my thesis allow us to construct many more
genus 2 curves Fq with N = 1− t + q points than just those
with maximal endomorphism ring.

Future work:

I Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

I For this, we have to find an elliptic curve E/Fp such that
#E (Fp) has a prime factor r of given magnitude, and

k = min{n ∈ Z : r |pn − 1}

is prescribed.

I I hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Our contributions

I We give a new algorithm to compute the class polynomials for
genus 2 curves that mimics the current state-of-the-art for
genus 1.

I The techniques in my thesis allow us to construct many more
genus 2 curves Fq with N = 1− t + q points than just those
with maximal endomorphism ring.

Future work:

I Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

I For this, we have to find an elliptic curve E/Fp such that
#E (Fp) has a prime factor r of given magnitude, and

k = min{n ∈ Z : r |pn − 1}

is prescribed.

I I hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Our contributions

I We give a new algorithm to compute the class polynomials for
genus 2 curves that mimics the current state-of-the-art for
genus 1.

I The techniques in my thesis allow us to construct many more
genus 2 curves Fq with N = 1− t + q points than just those
with maximal endomorphism ring.

Future work:

I Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

I For this, we have to find an elliptic curve E/Fp such that
#E (Fp) has a prime factor r of given magnitude, and

k = min{n ∈ Z : r |pn − 1}

is prescribed.

I I hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Our contributions

I We give a new algorithm to compute the class polynomials for
genus 2 curves that mimics the current state-of-the-art for
genus 1.

I The techniques in my thesis allow us to construct many more
genus 2 curves Fq with N = 1− t + q points than just those
with maximal endomorphism ring.

Future work:

I Constructing pairing-friendly elliptic curves is an important
research topic in cryptography.

I For this, we have to find an elliptic curve E/Fp such that
#E (Fp) has a prime factor r of given magnitude, and

k = min{n ∈ Z : r |pn − 1}

is prescribed.

I I hope to use class polynomials to construct (families of)
pairing-friendly genus 2 curves.



Thank you!
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