Constructing genus 2 curves over finite fields with a prescribed number of points

Chloe Martindale

Technische Universiteit Eindhoven
Joint work with Marco Streng

$$
\text { June 1, } 2017
$$

Reminder: Elliptic Curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

Reminder: Elliptic Curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

- The characteristic polynomial of the Frobenius morphism is of the form

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q
$$

Reminder: Elliptic Curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power
Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

- The characteristic polynomial of the Frobenius morphism is of the form

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q
$$

- We call t the trace of Frobenius.

Reminder: Elliptic Curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power
Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

- The characteristic polynomial of the Frobenius morphism is of the form

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q
$$

- We call t the trace of Frobenius.
- $\# E\left(\mathbb{F}_{q}\right)=1-t+q$

Endomorphisms of elliptic curves over finite fields

Definition
Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Endomorphisms of elliptic curves over finite fields

Definition
Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.

Endomorphisms of elliptic curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.

Endomorphisms of elliptic curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as $\operatorname{End}(E)$.

Endomorphisms of elliptic curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as $\operatorname{End}(E)$.
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi}) .
$$

Endomorphisms of elliptic curves over finite fields

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as $\operatorname{End}(E)$.
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi})
$$

- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$.

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
Definition
The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: E n d}(E)=\mathcal{O}_{K}(X-j(E)) \in \mathbb{Z}[X]
$$

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
Definition
The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: E n d}(E)=\mathcal{O}_{K}(X-j(E)) \in \mathbb{Z}[X]
$$

- This polynomial has integral coefficients!

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
Definition
The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: E n d}(E)=\mathcal{O}_{K}(X-j(E)) \in \mathbb{Z}[X]
$$

- This polynomial has integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves $E / \mathbb{F}_{\boldsymbol{q}}$ such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
Definition
The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: \operatorname{End}(E)=\mathcal{O}_{K}}(X-j(E)) \in \mathbb{Z}[X] .
$$

- This polynomial has integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
- There is an algorithm to enumerate all the elliptic curves with $1-t+q$ points given those with endomorphism ring \mathcal{O}_{K}.

Genus 2 curves

- A genus 2 curve C over a finite field \mathbb{F}_{q}, with q odd, has a hyperelliptic model

$$
y^{2}=f(x) \in \mathbb{F}_{q}[x]
$$

where $\operatorname{deg}(f)=5$ or 6 .

The group law for genus 2 curves

We define a group law on genus 2 curves with pairs of points.

The group law for genus 2 curves

First we define the inverse of $\{A, B\}$:

The group law for genus 2 curves

First we define the inverse of $\{A, B\}:-\{A, B\}=\{-A,-B\}$.

The group law for genus 2 curves

Suppose we have another pair of points $\{C, D\}$:

The group law for genus 2 curves

Draw the unique cubic passing through A, B, C, D :

The group law for genus 2 curves

We define $\{A, B\}+\{C, D\}+\{E, F\}=0$.

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

Recall:

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

Recall:

Definition

Let C be an elliptic curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

Recall:
Definition
Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on E is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\operatorname{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

Recall:
Definition
Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & E & \longrightarrow & E \\
& P & \mapsto & P^{q} .
\end{array}
$$

The Frobenius for genus 2 curves

- Via this group law we can associate an abelian variety to a genus 2 curve C, called the Jacobian of C, or just $\mathrm{Jac}(C)$.
- Think of points $P \in \operatorname{Jac}(C)$ as pairs of points $\{A, B\}$ on C.

Recall:

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & \longrightarrow \operatorname{Jac}(C) & \longrightarrow & \operatorname{Jac}(C) \\
P & \mapsto & P^{q} .
\end{array}
$$

The Frobenius for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{cccc}
\pi_{q}: & \operatorname{Jac}(C) & \longrightarrow & \operatorname{Jac}(C) \\
P & \mapsto & P^{q} .
\end{array}
$$

Recall:

- The characteristic polynomial of the Frobenius morphism on an elliptic curve is of the form

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q
$$

- $\# E\left(\mathbb{F}_{q}\right)=1-t+q$

The Frobenius for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{rllc}
\pi_{q}: & \operatorname{Jac}(C) & \longrightarrow & \operatorname{Jac}(C) \\
P & \mapsto & P^{q} .
\end{array}
$$

Recall:

- The characteristic polynomial of the Frobenius morphism on a genus 2 curve C is of the form

$$
\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}
$$

- $\# E\left(\mathbb{F}_{q}\right)=1-t+q$

The Frobenius for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{rllc}
\pi_{q}: & \operatorname{Jac}(C) & \longrightarrow & \operatorname{Jac}(C) \\
P & \mapsto & P^{q} .
\end{array}
$$

Recall:

- The characteristic polynomial of the Frobenius morphism on a genus 2 curve C is of the form

$$
\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}
$$

- $\# C\left(\mathbb{F}_{q}\right)=1-t+q$

The Frobenius for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. The q-power Frobenius morphism on $\operatorname{Jac}(C)$ is defined to be

$$
\begin{array}{rlll}
\pi_{q}: & & \longrightarrow \mathrm{Jac}(C) & \longrightarrow \\
P & \mapsto & P^{q} .
\end{array}
$$

Recall:

- The characteristic polynomial of the Frobenius morphism on a genus 2 curve C is of the form

$$
\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}
$$

- $\# C\left(\mathbb{F}_{q}\right)=1-t+q$
- $\# \operatorname{Jac}(C)\left(\mathbb{F}_{q}\right)=1-t+2 q+s-t q+q^{2}$

Endomorphisms of Elliptic Curves

Definition

Let E be an elliptic curve over a finite field \mathbb{F}_{q}. An endomorphism of E is defined to be a morphism $E \rightarrow E$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as $\operatorname{End}(E)$.
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi}) .
$$

- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Endomorphisms for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. An endomorphism of $\mathrm{JaC}(C)$ is defined to be a morphism $\mathrm{JaC}(C) \rightarrow \mathrm{Jac}(C)$.

Examples

- The q-power Frobenius morphism.
- $\begin{array}{rlc}E & \longrightarrow & E \\ P & \mapsto & n P,\end{array} \quad$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as $\operatorname{End}(E)$.
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi}) .
$$

- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Endomorphisms for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. An endomorphism of $\mathrm{JaC}(C)$ is defined to be a morphism $\mathrm{JaC}(C) \rightarrow \mathrm{Jac}(C)$.

Examples

- The q-power Frobenius morphism.
$\begin{array}{cll}\mathrm{Jac}(C) & \longrightarrow & \mathrm{Jac}(C) \\ P & \mapsto & n P,\end{array}$ where $n \in \mathbb{Z}$.
- The endomorphisms of E form a ring, called the endomorphism ring of E, written as End (E).
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi})
$$

- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Endomorphisms for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. An endomorphism of $\mathrm{JaC}(C)$ is defined to be a morphism $\mathrm{JaC}(C) \rightarrow \mathrm{Jac}(C)$.

Examples

- The q-power Frobenius morphism.
$\begin{array}{clcc}\mathrm{Jac}(C) & \longrightarrow & \operatorname{Jac}(C) \\ P & \mapsto & n P,\end{array}$ where $n \in \mathbb{Z}$.
- The endomorphisms of $\operatorname{Jac}(C)$ form a ring, called the endomorphism ring of $\operatorname{Jac}(C)$, written as $\operatorname{End}(\operatorname{Jac}(C))$.
- To find: E / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(E)$, where

$$
\chi_{\pi_{q}}(X)=X^{2}-t X+q=(X-\pi)(X-\bar{\pi})
$$

- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Endomorphisms for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. An endomorphism of $\mathrm{JaC}(C)$ is defined to be a morphism $\mathrm{JaC}(C) \rightarrow \mathrm{Jac}(C)$.

Examples

- The q-power Frobenius morphism.
$\begin{array}{clc}\mathrm{Jac}(C) & \longrightarrow & \mathrm{Jac}(C) \\ P & \mapsto & n P,\end{array}$ where $n \in \mathbb{Z}$.
- The endomorphisms of $\operatorname{Jac}(C)$ form a ring, called the endomorphism ring of $\operatorname{Jac}(C)$, written as $\operatorname{End}(\operatorname{Jac}(C))$.
- To find: C / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(\operatorname{Jac}(C))$, where π is a root of $\chi_{\pi_{q}}(X)$.
- All such E will satisfy $\mathbb{Z}[\pi] \subseteq \operatorname{End}(E)$.

Endomorphisms for genus 2 curves

Definition

Let C be a genus 2 curve over a finite field \mathbb{F}_{q}. An endomorphism of $\mathrm{JaC}(C)$ is defined to be a morphism $\mathrm{JaC}(C) \rightarrow \mathrm{JaC}(C)$.

Examples

- The q-power Frobenius morphism.
$\begin{array}{clc}\mathrm{Jac}(C) & \longrightarrow & \mathrm{Jac}(C) \\ P & \mapsto & n P,\end{array}$ where $n \in \mathbb{Z}$.
- The endomorphisms of $\operatorname{Jac}(C)$ form a ring, called the endomorphism ring of $\operatorname{Jac}(C)$, written as $\operatorname{End}(\operatorname{Jac}(C))$.
- To find: C / \mathbb{F}_{q} such that $\pi \in \operatorname{End}(\operatorname{Jac}(C))$, where π is a root of $\chi_{\pi_{q}}(X)$.
- All such C will satisfy $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \operatorname{End}(\operatorname{Jac}(C))$.

Counting points on elliptic curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{2}-t X+q$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is an imaginary quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi] \subseteq \mathcal{O}_{K}=\operatorname{End}(E)$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}=\operatorname{End}(\operatorname{Jac}(C))$
2. $\pi \in \operatorname{End}(E)$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}=\operatorname{End}(\operatorname{Jac}(C))$
2. $\pi, \bar{\pi} \in \operatorname{End}(\operatorname{Jac}(C))$
3. π defines a morphism of E with trace $\pi+\bar{\pi}=t$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$.

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of
$\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}=\operatorname{End}(\operatorname{Jac}(C))$
2. $\pi, \bar{\pi} \in \operatorname{End}(\operatorname{Jac}(C))$
3. π defines a morphism of $\operatorname{Jac}(C)$ with characteristic polynomial $\chi_{\pi_{q}}(X)$ (the q-power Frobenius morphism)
4. $\# E\left(\mathbb{F}_{q}\right)=1-t+q$

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}=\operatorname{End}(\operatorname{Jac}(C))$
2. $\pi, \bar{\pi} \in \operatorname{End}(\operatorname{Jac}(C))$
3. π defines a morphism of $\operatorname{Jac}(C)$ with characteristic polynomial $\chi_{\pi_{q}}(X)$ (the q-power Frobenius morphism)
4. $\# C\left(\mathbb{F}_{q}\right)=1-t+q$

Counting points on genus 2 curves over finite fields

Suppose that π is a complex (non-real) root of $\chi_{\pi_{q}}(X)=X^{4}-t X^{3}+(2 q+s) X^{2}-t q X+q^{2}$. Then

- $K=\mathbb{Q}(\pi)$ is a totally imaginary quadratic extension of a real quadratic number field.
- $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}$ (the ring of integers of K).

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$. To recap, we then get

1. $\mathbb{Z}[\pi, \bar{\pi}] \subseteq \mathcal{O}_{K}=\operatorname{End}(\operatorname{Jac}(C))$
2. $\pi, \bar{\pi} \in \operatorname{End}(\operatorname{Jac}(C))$
3. π defines a morphism of $\operatorname{Jac}(C)$ with characteristic polynomial $\chi_{\pi_{q}}(X)$ (the q-power Frobenius morphism)
4. $\# C\left(\mathbb{F}_{q}\right)=1-t+q$
5. $\# \operatorname{Jac}(C)\left(\mathbb{F}_{q}\right)=1-t+2 q+s-t q+q^{2}$.

Constructing elliptic curves with a given number of points

Strategy: construct elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.

Definition

The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: \operatorname{End}(E)=\mathcal{O}_{K}}(X-j(E)) \in \mathbb{Z}[X]
$$

- This polynomial has integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
- There is an algorithm to find all the elliptic curves with $1-t+q$ points given all the elliptic curves with endomorphism ring \mathcal{O}_{K}.

Interlude: Invariants of genus 2 curves

Interlude: Invariants of genus 2 curves

- The Igusa invariants

$$
i_{1}, i_{2}, i_{3}:\{C / k: C \text { a genus } 2 \text { curve }\} \longrightarrow k
$$

are functions of the coefficients of C.

Interlude: Invariants of genus 2 curves

- The Igusa invariants

$$
i_{1}, i_{2}, i_{3}:\{C / k: C \text { a genus } 2 \text { curve }\} \longrightarrow k
$$

are functions of the coefficients of C.

- The triple $\left(i_{1}(C), i_{2}(C), i_{3}(C)\right)$ determines $\operatorname{Jac}(C)$ up to isomorphism.

Interlude: Invariants of genus 2 curves

- The Igusa invariants

$$
i_{1}, i_{2}, i_{3}:\{C / k: C \text { a genus } 2 \text { curve }\} \longrightarrow k
$$

are functions of the coefficients of C.

- The triple $\left(i_{1}(C), i_{2}(C), i_{3}(C)\right)$ determines $\operatorname{Jac}(C)$ up to isomorphism.
- Mestre's algorithm computes C given $\left(i_{1}(C), i_{2}(C), i_{3}(C)\right)$.

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.

Definition

The class polynomial for K is defined to be

$$
H_{K}(X)=\prod_{E / \mathbb{C}: E n d(E)=\mathcal{O}_{K}}(X-j(E)) \in \mathbb{Z}[X] .
$$

- This polynomial has integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
- There is an algorithm to find all the elliptic curves with $1-t+q$ points given all the elliptic curves with endomorphism ring \mathcal{O}_{K}.

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.

Definition

The class polynomials for K are defined to be

$$
\begin{aligned}
& H_{K, 1}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{1}(C)\right) \in \mathbb{C}[X], \\
& H_{K, 2}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{2}(C)\right) \in \mathbb{C}[X], \\
& H_{K, 3}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{3}(C)\right) \in \mathbb{C}[X] .
\end{aligned}
$$

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that
$\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.

Definition

The class polynomials for K are defined to be

$$
H_{K, n}(X)=\prod_{\left.\left\{C / \mathbb{C}: \operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}\right\}\right) \cong}\left(X-i_{n}(C)\right) \in \mathbb{C}[X],
$$

for $n=1,2,3$.

- This polynomial has integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
- There is an algorithm to find all the elliptic curves with $1-t+q$ points given all the elliptic curves with endomorphism ring \mathcal{O}_{K}.

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that
$\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.
Definition
The class polynomials for K are defined to be

$$
H_{K, n}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(J a c(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{n}(C)\right) \in \mathbb{Z}[X],
$$

for $n=1,2,3$.

- These polynomials have integral coefficients!
- The roots of $H_{K}(X) \bmod q$ are the j-invariants of all the elliptic curves E / \mathbb{F}_{q} such that $\operatorname{End}(E)=\mathcal{O}_{K}$.
- There is an algorithm to find all the elliptic curves with $1-t+q$ points given all the elliptic curves with endomorphism ring \mathcal{O}_{K}.

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.
Definition
The class polynomials for K are defined to be

$$
H_{K, n}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(J a c(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{n}(C)\right) \in \mathbb{Z}[X],
$$

for $n=1,2,3$.

- These polynomials have integral coefficients!
- The roots of $H_{K, n}(X) \bmod q$ are the $n^{\text {th }}$ Igusa invariants $i_{n}(C)$ of all the genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.
- There is an algorithm to find all the elliptic curves with $1-t+q$ points given all the elliptic curves with endomorphism ring \mathcal{O}_{K}.

Constructing genus 2 curves with a given number of points

Strategy: construct genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.

Definition
The class polynomials for K are defined to be

$$
H_{K, n}(X)=\prod_{\left\{C / \mathbb{C}: \operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}\right\} / \cong}\left(X-i_{n}(C)\right) \in \mathbb{Z}[X],
$$

for $n=1,2,3$.

- These polynomials have integral coefficients!
- The roots of $H_{K, n}(X) \bmod q$ are the $n^{\text {th }}$ Igusa invariants $i_{n}(C)$ of all the genus 2 curves C / \mathbb{F}_{q} such that $\operatorname{End}(\operatorname{Jac}(C))=\mathcal{O}_{K}$.
- We give an algorithm to construct many more genus 2 curves with $1-t+q$ points given all the genus 2 curves with endomorphism ring \mathcal{O}_{K}.

Our contributions

- We give a new algorithm to compute the class polynomials for genus 2 curves that mimics the current state-of-the-art for genus 1 .

Our contributions

- We give a new algorithm to compute the class polynomials for genus 2 curves that mimics the current state-of-the-art for genus 1.
- The techniques in my thesis allow us to construct many more genus 2 curves \mathbb{F}_{q} with $N=1-t+q$ points than just those with maximal endomorphism ring.

Our contributions

- We give a new algorithm to compute the class polynomials for genus 2 curves that mimics the current state-of-the-art for genus 1.
- The techniques in my thesis allow us to construct many more genus 2 curves \mathbb{F}_{q} with $N=1-t+q$ points than just those with maximal endomorphism ring.
Future work:
- Constructing pairing-friendly elliptic curves is an important research topic in cryptography.

Our contributions

- We give a new algorithm to compute the class polynomials for genus 2 curves that mimics the current state-of-the-art for genus 1 .
- The techniques in my thesis allow us to construct many more genus 2 curves \mathbb{F}_{q} with $N=1-t+q$ points than just those with maximal endomorphism ring.
Future work:
- Constructing pairing-friendly elliptic curves is an important research topic in cryptography.
- For this, we have to find an elliptic curve E / \mathbb{F}_{p} such that $\# E\left(\mathbb{F}_{p}\right)$ has a prime factor r of given magnitude, and

$$
k=\min \left\{n \in \mathbb{Z}: r \mid p^{n}-1\right\}
$$

is prescribed.

Our contributions

- We give a new algorithm to compute the class polynomials for genus 2 curves that mimics the current state-of-the-art for genus 1 .
- The techniques in my thesis allow us to construct many more genus 2 curves \mathbb{F}_{q} with $N=1-t+q$ points than just those with maximal endomorphism ring.
Future work:
- Constructing pairing-friendly elliptic curves is an important research topic in cryptography.
- For this, we have to find an elliptic curve E / \mathbb{F}_{p} such that $\# E\left(\mathbb{F}_{p}\right)$ has a prime factor r of given magnitude, and

$$
k=\min \left\{n \in \mathbb{Z}: r \mid p^{n}-1\right\}
$$

is prescribed.

- I hope to use class polynomials to construct (families of) pairing-friendly genus 2 curves.

Thank you!

