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These notes are from a talk at Leiden University, of which the aim was to
understand Drinfeld’s proof of the Serre-Tate theorem, following Katz’ paper
([Kat]), and so the theory of canonical lifts of abelian varieties. That is, given
an abelian variety defined over a finite field of characteristic p > 0, in what
sense can one ‘lift’ said variety to be defined over a field of characteristic zero?
The author thanks Bas Edixhoven for his explanation of the material, and Marco
Streng, Giulio Orecchia, Erik Visse, Carlo Pagano, Peter Bruin, Martin Bright
and Remy van Dobben de Bruyn for their helpful comments and questions. If
there are any typos or mistakes the author welcomes further corrections.

1 Statement of the Serre-Tate theorem

Throughout this talk, k will be a field of characteristic p > 0, and R will be
a nilpotent thickening of k, i.e. R is a ring with a nilpotent ideal I such that
R/I ∼= k. Let the nilpotency degree of I be n + 1, i.e. n + 1 is the smallest
positive integer such that In+1 = 0. Two examples of such an R would be

k[E ]/(En+1) and Wn+1(k),

where Wn+1(k) is the ring of Witt vectors for k of length n + 1, the definition
of which will be recalled in Definition 2.1. The Serre-Tate theorem will be an
equivalence of categories, so we must first give these 2 categories.

Definition 1.1. We denote by A the category of abelian schemes over Spec(R),
where R is as above.

Definition 1.2. [Tat, Definition 2.1]
Let p be prime, and let h be a non-negative integer. Let R′ be a complete
Noetherian local ring (in particular, as I is nilpotent the Artin local ring R is
an example of a complete Noetherian local ring). Then a p-divisible group G of
height h is an inductive system

G = (Gv, iv)v≥0,
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where
1. Gv is a finite group scheme over R′ of order ph,
2. for each v ≥ 0,

0 // Gv
iv // Gv+1

ph // Gv+1

is an exact sequence.

Definition 1.3. Let R, k and p be as above. We denote by D the category of
triples

(Ak, G, E) ,

whereAk is an abelian variety over Spec(k), G is a p-divisible group over Spec(R)
and E is an isomorphism

E : Ak[p∞]−̃→G×Spec(R) Spec(k).

Here, as usual, Ak[p∞] denotes the p∞ torsion subgroup of Ak. From now on
we will drop ‘Spec’.

We may now define a functor

Φ : A −→ D
A → (A× k,A[p∞],natural E) .

Leading us to this amazing result!

Theorem (Serre-Tate). The functor Φ defined above is an equivalence of cate-
gories.

Most of the rest of this talk will be dedicated to Drinfeld’s proof of this
theorem, but first we return to Witt vectors to give a nice application.

2 Application of the Serre-Tate Theorem

We will now show how me may use the Serre-Tate Theorem to canonically lift
ordinary abelian varieties and their morphisms defined over a field of positive
characteristic to a field of characteristic zero, for which Witt vectors will be a
crucial tool, so we first recall the definition.

Definition 2.1. Let k be as above (that is, a field of characteristic p > 0). The
ring Wn+1(k) of Witt vectors is defined as follows.
• The elements of Wn+1(k) are tuples (α0, . . . , αn) ∈ kn+1.
• The operations +, · of Wn+1(k) are defined in the following way. For i =
0, . . . , n we will define polynomials si,mi ∈ Z[x0, . . . , xi, y0, . . . , yi], and in turn
we will define

(x0, . . . , xn) + (y0, . . . , yn) = (s0, . . . , sn),

(x0, . . . , xn) · (y0, . . . , yn) = (m0, . . . ,mn).
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The polynomials s0, . . . , sn and m0, . . . ,mn are defined iteratively by the fol-
lowing rules:
1. s0 = x0 + y0, m0 = x0y0,

2. For i = 1, . . . , n, define φi(z0, . . . , zi) = zp
i

0 + pzp
i−1

1 + · · ·+ pizi.
3. For i = 1, . . . , n, define si and mi by

φi(s0, ..., si) = φi(x0, ..., xi) + φi(y0, ..., yi),

φi(m0, ...,mi) = φi(x0, ..., xi) · φi(y0, ..., yi).

Just using the definition above, the two facts below are easy to check, so we
leave them as an exercise for those who are interested.

Exercise.
1. The ideal I := pWn+1(k) of the ring Wn+1(k) is nilpotent, with In+1 = 0,
and furthermore

Wn+1(k)/pWn+1(k) ∼= k.

2. If the field k is a finite extension of Z/pZ, then W (k), which is defined by

W (k) = lim
n→∞

Wn+1(k),

is a finite extension of Zp.

By the first exercise, we see that for any field k of characteristic p > 0, and
for any n, the ring Wn+1(k) is a suitable candidate for our ring R (satisfying
the hypotheses of the Serre-Tate Theorem), with nilpotent ideal pWn+1(k).
In particular, if we define abelian varieties Ak and A′k over k, then for each
n ∈ Z≥0, if there exist p-disivisble groups G and G′ defined over Wn+1(k),
isomorphisms

E : Ak[p∞]→̃G× k and E ′ : A′k[p∞]→̃G′ × k,

and a morphism in D (see Definition 1.3)

f̄ : (Ak, G, E) −→ (A′k, G
′, E ′),

then using the Serre-Tate Theorem we may lift f via inverse of the functor Φ
to a morphism in A (see Definition 1.1)

f : AWn+1(k) −→ A′Wn+1(k)

of abelian varieties A and A′ over Wn+1(k), whose base changes to k are Ak
and A′k respectively.

Remark 2.2. In order for G, G′, E and E ′ to exist (and for their choice to be
canonical), it is sufficient to take Ak and A′k to be ordinary abelian varieties,
which we do not have time to prove rigorously here. The interested reader
should see [LST], [Kat] or [Dos] for more details.
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Now let k be a finite extension of Z/pZ, and Ak and A′k be ordinary abelian
varieties over k. Then by the above, for every n ∈ Z≥0, there exist canonical G,
G′, E and E ′ such that we have a morphism in D ,

f̄n : (Ak, G, E) −→ (A′k, G
′, E ′),

which upon restricting to the first coordinate yields a morphism f̃ : Ak → A′k.

We choose f̄n in such a way that f̃ is the same for every n (this is possible by
definition). The morphism f̄n in turn may be lifted canonically to a morphism
in A ,

fn : AWn+1(k) −→ A′Wn+1(k)

of abelian varieties over Wn+1(k) such that the base changes to k are Ak and
A′k respectively. Recall now that W (k) was defined in the second exercise to be
limn→∞Wn+1(k), so that by the universal property of limits we get a unique
morphism

f : AW (k) −→ A′W (k)

of abelian varieties over W (k), such that the base change of f to k yields f̃ and
the base changes of AW (k) and A′W (k) to k are Ak and A′k respectively.

All of this shows us that we can canonically lift ordinary abelian varieties
and their morphisms defined over a field k which is a finite extension of Z/pZ
to be defined over W (k), which by the second exercise is a finite extension of
Zp, which we can then embed into a finite extension of Qp, so we are done!

3 Proof of the Serre-Tate Theorem

We now turn to Drinfeld’s proof of the Serre-Tate Theorem, which is far simpler
than the original proof. Drinfeld first proves 4 ‘observations’ about lifting mor-
phisms which make the proof of the theorem relatively easy, so we first prove
these observations.

Throughout this section, R, I, k and p remain as before (see the the first
section), G and H will be either abelian schemes over R or p-divisible groups
over R, and A will be an R-algebra. In order to gain a better understanding of
lifting morphisms, we want to consider the map

ρ : Hom(G,H) −→ Hom(G× k,H × k).

We will write Gk and Hk for G× k and H × k respectively. ρ versus ρ(A)???

ρ(A) : Hom(G(A), H(A)) −→ Hom(G(A/IA), H(A/IA))

Observation 1. The kernel of ρ(A) is given by

Hom(G(A), ker( H(A)
res // H(A/IA) ).
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Proof. Let f be an element of Hom(G(A), H(A)). Then

G(A)
f //

res

��

H(A)

res

��
G(A/IA)

ρ(A)(f)// H(A/IA)

commutes, so that

ρ(A)(f) = 0⇔ im(f)|H(A/IA) = 0.

Observation 2.
a) G is p-divisible.

b) ker( H(A)
res // H(A/IA) ) is pn+1-torsion. (Here h is the height of H as a

p-divisible group).

Proof. (Sketch)
b) Assume first that H is a formal Lie group, i.e. H = SpfR[[x1, . . . , xk]]
together with a formal group law

zi = xi + yi + h.o.t.

Therefore, coordinate-wise, multiplication by p gives

x
(p)
i = pxi + h.o.t.

Furthermore, p = 0 in k so in fact p ∈ I, and for (x1, . . . , xk) ∈ ker(H(A) →
H(A/IA)), for all i = 1 . . . k we know that xi ∈ I, so that

x
(p)
i ∈ I

2,

so by induction,

x
(pn)
i ∈ In+1.

So if H were a formal Lie group, our assertion would hold. It remains to show
that this is all we need. We state two lemmas without proof:

Lemma 3.1 (Grothendieck-Messing). Let R be as above (so that in particular
p is locally nilpotent on Spec(R)), and let H be a p-divisible group. Then H is
formally smooth and the formal completion of H along its unit section, denoted
Ĥ, is a formal Lie group.

Lemma 3.2 (Stack’s project). Let H be a commutative group scheme over R.
Then by descent theory we may view H as an abelian f.p.p.f. sheaf and so

Ĥ = lim
→

Spec(OH/In+1)

is the formal completion of H along its unit section, and is a formal Lie group.
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These two lemmas allow us to assume that in both of our cases (H a p-
divisible group or H an abelian scheme), H̄ is a formal Lie group, and so the
above applies, so it remains to show that if (b) holds for H̄, then it also holds
for H.

assumption: H smooth
We assume without proof two more facts:

Fact 1. Ĥ(A) = ker( H(A)
res // H(A/

√
0) ).

Fact 2. If H is formally smooth, A is a R-algebra and J is an ideal of R, then
the restriction map H(A)→ H(A/JA) is surjective.
Now define

HI(A) = ker( H(A)
res // H(A/IA) ),

and define α and β to be the induced maps making the diagram below commute:

0

��

0

��
ĤI(A)

��

α //____ HI(A)

��

// coker(α) // 0

0 // Ĥ(A)

��

// H(A)

��

// H(A/
√

0A)

β

���
�
�

// 0

0 // Ĥ(A/IA)

��

// H(A/IA)

��

// H(A/
√
IA)

��

// 0

0 0 0.

The horizontal (vertical) sequences are exact on the right (bottom) because H
is formally smooth. Now as I is nilpotent,

√
I =
√

0 and so β is an isomorphism,
and hence by the snake lemma, α is surjective, and so is also an isomorphism.

Observation 3. The cokernel of ρ(A) is pn+1-torsion.

Proof. Let fk be a morphism

fk : G× k → H × k.

It is sufficient to prove that pn+1fk lifts to a morphism g : G→ H. By Obser-
vation 2b and Fact 2 in the proof of Observation 2b, we have existence of the
map ‘lift’, which satisfies the diagram

H(A)
pn+1

//

res

$$
H(A) // H(A/IA)

lift

hh k_S
,
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from which we also see that

lift ◦ res = pn+1.

Then we may define our g : G→ H by

G(A)
res //

g

55S U W Y [ ] _ a c e g i k
G(A/IA)

fk // H(A/IA)
lift // H(A).

G(A) versus G?

Observation 4. The morphism fk : G × k → H × k of Observation 3 lifts to
some morphism f : G → H if and only if the morphism g of Observation 3
annihilates G[pn+1].

Proof. ‘If’ follows from the fact that lift ◦ res = pn+1, so it remains to prove
‘only if’. Now by definition of G[pn+1] and g, we have the following diagram:

0 // G[pn+1] // G
pn+1

//

g

��

G

��~
~

~
~

H.

That is, there exists a map f̃ : G → H such that g = f̃ ◦ pn+1, but by unicity
(Observation 2), f̃ must life fk.

We are now ready for the proof of the Serre-Tate Theorem!

Proof of Theorem 1. Proof that Φ is fully faithful. We want to show that
given
1. abelian schemes A and B over R and
2. a morphism of abelian varieties fk : A × k → B × k and a morphism of
p-divisible groups f [p∞] : A[p∞]→ B[p∞] such that E : fk[p∞]→̃f [p∞]× k,
there exists a unique morphism f : A→ B inducing both fk and f [p∞].

By unicity (Observation 2), it is sufficient to prove that fk lifts, since is f
lifts fk, then f [p∞] : A[p∞] → B[p∞] lifts f [p∞] × k, which by assumption
is isomorphic to fk[p∞]. Now by Observation 4, fk : Ak → Bk lifts to some
morphism f : A→ B if and only if the morphism g of Observation 3 annihilates
A[pn+1] = A[p∞][pn+1], which by Observation 4 happens if and only if the
morphism fk[p∞] : Ak[p∞] → Bk[p∞] lifts to a morphism f [p∞] : A[p∞] →
B[p∞].
Proof that Φ is essentially surjective.
We want now to show that given
1. an abelian variety Ak over k,
2. a p-divisible group G over R, and
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3. an isomorphism ep : Ak[p∞]→ G× k,
there exists an abelian scheme A over R lifting Ak with A[p∞] = G.

To prove this we must invoke the following theorem of Grothendieck:

Lemma 3.3 (Grothendieck). Let S = Spec(R) and let Sk = S× k. If Ak/Sk is
an abelian scheme, then there exists an abelian scheme A/S whose base change
to Sk is Ak.

By the above lemma, we may choose a lift A′ overR of Ak. Then in particular

(A′ × k)[p∞] ∼= Ak[p∞] ∼= G× k,

so by Observation 4, there exists a morphism

f : A′[p∞]→ G.

Claim 3.4. The morphism f is an isogeny.

Proof. Lift E−1 to φ : G→ A′[p∞]. Then Observation 3 implies that

f ◦ φ = φ ◦ f = pn+1,

and so f is an isogeny, with ker(f) being a finite subgroup of A′[pn+1].

If in addition to being finite, the kernel K of f is flat over R (implying that
is a finite locally free subgroup of A′), the A := A′/K is an abelian scheme over
R (see SGA 3), and

A[p∞] = (A′/K)[p∞] = (A′[p∞])/K = G,

in which case we are done! Now as f is flat, by base change we may conclude
that K is also flat over R, which is explained in detail in [Dos], but essentially
follows from ‘fibre-by-fire’ criterion of flatness and Observation 3.
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