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What is SIDH?
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Recall: SIDH as an isogeny graph
I Vertices: j-invariants of elliptic curves defined over Fp.
I Edges: 2- and 3-isogenies of elliptic curves (up to some

equivalence).

2 and 3-isogenies of elliptic curves over F4312
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Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny
E→ E, or the zero map.

Example: The multiplication-by-m map

[m] : E→ E

is an endomorphism. If m 6= 0 in the base field, its kernel is

E[m] ∼= Z/mZ× Z/mZ.

I A point P ∈ E[m] is called an m-torsion point.
I The group G = 〈P〉 generated by an m-torsion point

P ∈ E[m] is the kernel of an m-isogeny written

f : E→ E/G.
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SIDH: the dirty details
Public parameters:

I a large prime p = 2n3m − 1 and a supersingular E/Fp
I bases (PA,QA) and (PB,QB) of E[2n] and E[3m]

Alice public Bob

a random←−−− {0...2n−1} b random←−−− {0...3m−1}

A := 〈PA + [a]QA〉
compute ϕA : E→ E/A

B := 〈PB + [b]QB〉
compute ϕB : E→ E/B

E/A, ϕA(PB), ϕA(QB) E/B, ϕB(PA), ϕB(QA)

A′ := 〈ϕB(PA) + [a]ϕB(QA)〉
s := j

(
(E/B)/A′) B′ := 〈ϕA(PB) + [b]ϕA(QB)〉

s := j
(
(E/A)/B′)

Break it by: given public info, find secret key: ϕA (or just A).
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Here’s some things that don’t break it...
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Extra points

Aim: given points PB, QB on E, the image E/A of the secret
isogeny ϕA : E→ E/A, and the images ϕA(PB) and ϕB(QB),
find ϕA.

Fact: with the parameters used in SIDH, the images ϕA(PB) and
ϕB(QB) uniquely determine the secret isogeny ϕA.
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Extra points: Interpolation?

I Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

 Rational function interpolation?

:( ...the polynomials are of exponential degree ≈ √p.
 can’t even write down the result without decomposing

into a sequence of smaller-degree maps.

I No known algorithms for interpolating and decomposing
at the same time.
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Extra points: Group theory?

I Recall: we know the image under ϕA of 3m-torsion points
PB and QB.

I Can we extrapolate the image under ϕA of some other
(coprime) `n-torsion points and exploit it?

e.g. we win if we get the action of ϕA on the 2n-torsion.

:( There’s an isomorphism of groups

E(Fp2) ∼= (Z/2n)2 × (Z/3m)2 .

=⇒ can’t learn anything about 2n from 3m using groups alone.
(Annoying: This shows up in many disguises.)
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Extra points: Petit’s endomorphisms
I For typical SIDH parameters, we know the endomorphism

ring End(E0).

I Going back and forth to E0 yields endomorphisms of EA:

E0 EA
ϕ̂A

ϕA

ι

 We can compute the image of our 3m-torsion points on EA
under these endomorphisms.

I Idea: Find an appropriate endomorphism τ of degree 3mr;
recover 3m-part as above; brute-force the remaining part.
 image of r-torsion point under ϕA
=⇒ (details) =⇒ Recover the secret ϕA.

:( To get r small enough to be an attack, we have to change
the SIDH parameters so that Alice’s isogeny has a much
higher degree than Bob’s.
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Extra points: Summary

I Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3m-torsion except what’s given.

:(

I Petit’s approach cannot be expected to work for ‘real’
(symmetric, two-party) SIDH.

:(

I Life sucks.
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The pure isogeny problem

Fundamental problem: given supersingular E and E′/Fp2 that
are `n-isogeneous, compute an isogeny φ : E→ E′.

11 / 18



The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 + 1 and E′/F431 : y2 = x3 + 291x + 298.

These elliptic curves are 22 = 4-isogenous. Problem: compute
an isogeny f : E→ E′.
The kernel of f : E→ E′ is generated by a point P ∈ E(Fp) of
order 4.

I Solution (a): try all nine possible order 4 kernels and use
Vélu’s formulas to find f .

I Solution (b): try all three possible order 2 kernels from
both E and E′ and check when the codomain is the same.

Solution (b) is meet-in-the-middle: complexity Õ(p1/4).
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Exploiting subgraphs

The SIDH graph has a Fp-subgraph:

2, 3-isogenies
over F4312

2, 3-isogenies
over F431
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Exploiting subgraphs?

3-isogenies
nodes up to F431-isomorphism

3-isogenies
nodes up to F431-isomorphism

Kuperberg’s subexponential quantum algorithm to compute a
hidden shift applies to this! Complexity: Lp[1/2]. Finding
nearest node in subgraph costs... Õ(p1/2).

:(

(Delfs-Galbraith, Biasse-Jao-Sankar)
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More graphs defined over Fp

From 1-dimensional E/Fp2 ,

construct 2-dimensional W(E)/Fp

‘Weil restriction’

This picture is very unlikely to be accurate.
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More graphs defined over Fp

I The associated graph of 2-dimensional objects is
(heuristically) O(

√p) cycles of length O(
√p).

(Superspecial principally polarized abelian surfaces if you care)

I If your two elliptic curves are in the same cycle,
Kuperberg’s algorithm can find the isogeny in
subexponential time.

I Probability of being in the same cycle: O(1/
√p).

:(
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√p).

:(
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More equivalent categories: lifting to C

A well-chosen subset of

{
Elliptic curves E defined over C

with End(E) = R

}
Here computing isogenies is easy!xy{

Non-supersingular elliptic curves defined over Fq
with End(E) = R

}
Here computing isogenies is harder.

I Computing the equivalence is slow.
I Finding a non-scalar endomorphism is hard.
I If you can find non-scalar endomorphisms, SIDH is

probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).
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Thank you!
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