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What is SIDH?
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Recall: SIDH as an isogeny graph

» Vertices: j-invariants of elliptic curves defined over F,,.
» Edges: 2- and 3-isogenies of elliptic curves (up to some
equivalence).
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2 and 3-isogenies of elliptic curves over [F 3,2
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Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny
E — E, or the zero map.
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Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny
E — E, or the zero map.

Example: The multiplication-by-m map
[m]: E— E
is an endomorphism. If m # 0 in the base field, its kernel is

E[m| = Z/mZ x 7./ mZ.

» A point P € E[m] is called an m-torsion point.

» The group G = (P) generated by an m-torsion point
P € E[m] is the kernel of an m-isogeny written

f:E—EJG.
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SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]
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SIDH: the dirty details

Public parameters:
» alarge prime p = 2"3" — 1 and a supersingular E/IF,,
» bases (P4,Qa) and (Pp, Qp) of E[2"] and E[3"]

Alice public Bob

g A 2P b &2 £0...3m -1}

A = (Pa+ [a]Qa) B := (Pg + [b]Qs)
compute p4: E — E/A compute pp: E — E/B
E/A, ¢a(Ps), ¢4 (Qs) E/B, ¢5(Pa), ¢5(Qa)

e T
A" := (pp(Pa) + [a]pp(Qa)) B’ := (pa(Pg) + [b]pa(Qp))
s .= j((E/B)/A") s:=j((E/A)/B)

Break it by: given public info, find secret key: ¢4 (or just A).
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Here’s some things that don’t break it...
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Extra points

Aim: given points Pg, Qp on E, the image E/A of the secret
isogeny ¢4 : E — E/A, and the images 4 (Pp) and ¢5(Qp),
find PA-

Fact: with the parameters used in SIDH, the images ¢4 (Pg) and
©p(Qp) uniquely determine the secret isogeny ¢ 4.
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.
We know enough input-output pairs to determine the map.

~- Rational function interpolation?

7/18



Extra points: Interpolation?

> Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.

~- Rational function interpolation?

~ ...the polynomials are of exponential degree ~ ,/p.

~+ can’t even write down the result without decomposing
into a sequence of smaller-degree maps.
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Extra points: Interpolation?

> Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.

~- Rational function interpolation?

...the polynomials are of exponential degree ~ ,/p.

):

§

can’t even write down the result without decomposing
into a sequence of smaller-degree maps.

» No known algorithms for interpolating and decomposing
at the same time.
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Extra points: Group theory?

» Recall: we know the image under ¢4 of 3"-torsion points
P B and QB'
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Extra points: Group theory?

» Recall: we know the image under ¢4 of 3"-torsion points
P B and QB'

» Can we extrapolate the image under ¢4 of some other
(coprime) ¢"-torsion points and exploit it?

e.g. we win if we get the action of ¢4 on the 2"-torsion.

~ There’s an isomorphism of groups

E(F,) = (Z/2")* x (Z/3™)>.

p

= can’t learn anything about 2" from 3" using groups alone.

(Annoying: This shows up in many disguises.)
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Extra points: Petit’s endomorphisms

» For typical SIDH parameters, we know the endomorphism
ring End(Ey).
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Extra points: Petit’s endomorphisms

» For typical SIDH parameters, we know the endomorphism
ring End(Ey).

» Going back and forth to Ej yields endomorphisms of E4:

S /QOA\
\ /

~+ We can compute the image of our 3"-torsion points on E4
under these endomorphisms.

» Idea: Find an appropriate endomorphism 7 of degree 3"'r;
recover 3"-part as above; brute-force the remaining part.
~+ image of r-torsion point under ¢4
—> (details) = Recover the secret @4.

~ To get r small enough to be an attack, we have to change
the SIDH parameters so that Alice’s isogeny has a much
higher degree than Bob’s.
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

10/18



Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

» Petit’s approach cannot be expected to work for ‘real’
(symmetric, two-party) SIDH.
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Extra points: Summary

» Same problem all over the place:
There seems to be no way to obtain anything from the
given action-on-3"-torsion except what’s given.

—

» Petit’s approach cannot be expected to work for ‘real’
(symmetric, two-party) SIDH.

—

» Life sucks.

Y/
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The pure isogeny problem

Fundamental problem: given supersingular E and E'/IF,» that
are ("-isogeneous, compute an isogeny ¢ : E — E'.

11/18



The pure isogeny problem

Example
Choose

E/F431 : y2 =x3 +1 and E//IF431 : yZ =x3 + 291x + 298.
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The pure isogeny problem

Example
Choose

E/F431 : y2 = x3 +1 and E//IF431 : yZ = x3 4+ 291x + 298.

These elliptic curves are 2% = 4-isogenous. Problem: compute
anisogeny f : E — E'.

The kernel of f : E — E is generated by a point P € E(FF,) of
order 4.

» Solution (a): try all nine possible order 4 kernels and use
Vélu's formulas to find f.

» Solution (b): try all three possible order 2 kernels from
both E and E’ and check when the codomain is the same.

Solution (b) is meet-in-the-middle: complexity O(p'/4).
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Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs

The SIDH graph has a [F)-subgraph:
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Exploiting subgraphs?
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Exploiting subgraphs?

3-isogenies 3-isogenies

nodes up to Fy3i-isomorphism nodes up to Fy3;-isomorphism

Kuperberg’s subexponential quantum algorithm to compute a
hidden shift applies to this! Complexity: L,[1/2]. Finding
nearest node in subgraph costs... O(p'/?). =~

(Delfs-Galbraith, Biasse-Jao-Sankar)
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More graphs defined over I,
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This picture is very unlikely to be accurate.
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More graphs defined over F,

» The associated graph of 2-dimensional objects is
(heuristically) O(,/p) cycles of length O(,/p).

(Superspecial principally polarized abelian surfaces if you care)
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More equivalent categories: lifting to C

Elliptic curves E defined over C
with End(E) =R

Here computing isogenies is easy!

|

Non-supersingular elliptic curves defined over F,
with End(E) =R

Here computing isogenies is harder.
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More equivalent categories: lifting to C
A well-chosen subset of

Elliptic curves E defined over C
with ¢ € End(E)

Here computing isogenies is easy!

|

Supersingular elliptic curves defined over F,
with non-scalar ¢ € End(E)

Here computing isogenies is harder.

» Computing the equivalence is slow.
» Finding a non-scalar endomorphism is hard.
» If you can find non-scalar endomorphisms, SIDH is

probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).
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(V)

Thank you!



