How to not break SIDH \because

Chloe Martindale ${ }^{1} \quad$ Lorenz Panny ${ }^{2}$
${ }^{1}$ University of Bristol $\quad{ }^{2} \mathrm{TU} / \mathrm{e}$

CWI, Amsterdam, 10 January 2020

What is SIDH?

Recall: SIDH as an isogeny graph

- Vertices: j-invariants of elliptic curves defined over $\overline{\mathbb{F}_{p}}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

Recall: SIDH as an isogeny graph

- Vertices: j-invariants of elliptic curves defined over $\overline{\mathbb{F}_{p}}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

2 and 3-isogenies of elliptic curves over $\mathbb{F}_{431^{2}}$

Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism.

Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

- A point $P \in E[m]$ is called an m-torsion point.

Interlude: auxilliary points in SIDH

Recall: An endomorphism of an elliptic curve E is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by- m map

$$
[m]: E \rightarrow E
$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$
E[m] \cong \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / m \mathbb{Z}
$$

- A point $P \in E[m]$ is called an m-torsion point.
- The group $G=\langle P\rangle$ generated by an m-torsion point $P \in E[m]$ is the kernel of an m-isogeny written

$$
f: E \rightarrow E / G
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{ccc}
\text { Alice } & \text { public } & \text { Bob } \\
a \stackrel{\text { random }}{\mathrm{r}_{2}}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\overbrace{2}}\left\{0 \ldots 3^{m}-1\right\}
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{ccc}
\underline{\text { Alice }} & \text { public } & \underline{\text { Bob }} \\
a \stackrel{\text { random }}{\leftarrow}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftarrow}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cr}
\text { Alice } & \text { public }
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\stackrel{1}{2}\left\{0 \ldots 3^{m}-1\right\}} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right)
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

Alice	public
$a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\}$	$b \stackrel{\text { random }}{ }\left\{0 \ldots 3^{m}-1\right\}$
$A:=\left\langle P_{A}+[a] Q_{A}\right\rangle$	$B:=\left\langle P_{B}+[b] Q_{B}\right\rangle$
compute $\varphi_{A}: E \rightarrow E / A$	compute $\varphi_{B}: E \rightarrow E / B$
$E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right)$	$E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right)$
$A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle$	$B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

SIDH: the dirty details

Public parameters:

- a large prime $p=2^{n} 3^{m}-1$ and a supersingular E / \mathbb{F}_{p}
- bases $\left(P_{A}, Q_{A}\right)$ and $\left(P_{B}, Q_{B}\right)$ of $E\left[2^{n}\right]$ and $E\left[3^{m}\right]$

$$
\begin{array}{cc}
\underline{\text { Alice }} & \text { public } \\
a \stackrel{\text { Bob }}{\text { random }}\left\{0 \ldots 2^{n}-1\right\} & b \stackrel{\text { random }}{\leftrightarrows}\left\{0 \ldots 3^{m}-1\right\} \\
A:=\left\langle P_{A}+[a] Q_{A}\right\rangle & B:=\left\langle P_{B}+[b] Q_{B}\right\rangle \\
\text { compute } \varphi_{A}: E \rightarrow E / A & \text { compute } \varphi_{B}: E \rightarrow E / B \\
E / A, \varphi_{A}\left(P_{B}\right), \varphi_{A}\left(Q_{B}\right) & E / B, \varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right) \\
\longleftrightarrow \\
A^{\prime}:=\left\langle\varphi_{B}\left(P_{A}\right)+[a] \varphi_{B}\left(Q_{A}\right)\right\rangle & B^{\prime}:=\left\langle\varphi_{A}\left(P_{B}\right)+[b] \varphi_{A}\left(Q_{B}\right)\right\rangle \\
s:=j\left((E / B) / A^{\prime}\right) & s:=j\left((E / A) / B^{\prime}\right)
\end{array}
$$

Break it by: given public info, find secret key: φ_{A} (or just A).

Here's some things that don't break it...

Extra points

Aim: given points P_{B}, Q_{B} on E, the image E / A of the secret isogeny $\varphi_{A}: E \rightarrow E / A$, and the images $\varphi_{A}\left(P_{B}\right)$ and $\varphi_{B}\left(Q_{B}\right)$, find φ_{A}.

Fact: with the parameters used in SIDH, the images $\varphi_{A}\left(P_{B}\right)$ and $\varphi_{B}\left(Q_{B}\right)$ uniquely determine the secret isogeny φ_{A}.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.
\rightsquigarrow Rational function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.

We know enough input-output pairs to determine the map.
\rightsquigarrow Rational function interpolation?
$\because \quad$..the polynomials are of exponential degree $\approx \sqrt{p}$.
$\rightsquigarrow c a n ' t ~ e v e n ~ w r i t e ~ d o w n ~ t h e ~ r e s u l t ~ w i t h o u t ~ d e c o m p o s i n g ~$ into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps. We know enough input-output pairs to determine the map.
\rightsquigarrow Rational function interpolation?
$\because \quad$..the polynomials are of exponential degree $\approx \sqrt{p}$.
\rightsquigarrow can't even write down the result without decomposing into a sequence of smaller-degree maps.
- No known algorithms for interpolating and decomposing at the same time.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.
\because There's an isomorphism of groups

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong\left(\mathbb{Z} / 2^{n}\right)^{2} \times\left(\mathbb{Z} / 3^{m}\right)^{2}
$$

Extra points: Group theory?

- Recall: we know the image under φ_{A} of 3^{m}-torsion points P_{B} and Q_{B}.
- Can we extrapolate the image under φ_{A} of some other (coprime) ℓ^{n}-torsion points and exploit it?
e.g. we win if we get the action of φ_{A} on the 2^{n}-torsion.
\because There's an isomorphism of groups

$$
E\left(\mathbb{F}_{p^{2}}\right) \cong\left(\mathbb{Z} / 2^{n}\right)^{2} \times\left(\mathbb{Z} / 3^{m}\right)^{2}
$$

\Longrightarrow can't learn anything about 2^{n} from 3^{m} using groups alone. (Annoying: This shows up in many disguises.)

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

\rightsquigarrow We can compute the image of our 3^{m}-torsion points on E_{A} under these endomorphisms.

Extra points: Petit's endomorphisms

- For typical SIDH parameters, we know the endomorphism ring $\operatorname{End}\left(E_{0}\right)$.
- Going back and forth to E_{0} yields endomorphisms of E_{A} :

\rightsquigarrow We can compute the image of our 3^{m}-torsion points on E_{A} under these endomorphisms.
- Idea: Find an appropriate endomorphism τ of degree $3^{m} r$; recover 3^{m}-part as above; brute-force the remaining part. \rightsquigarrow image of r-torsion point under φ_{A} \Longrightarrow (details) \Longrightarrow Recover the secret φ_{A}.
\because To get r small enough to be an attack, we have to change the SIDH parameters so that Alice's isogeny has a much higher degree than Bob's.

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\because

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\because

- Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.
\because

Extra points: Summary

- Same problem all over the place:

There seems to be no way to obtain anything from the given action-on- 3^{m}-torsion except what's given.
\cdots

- Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.
\because
- Life sucks.

The pure isogeny problem

Fundamental problem: given supersingular E and $E^{\prime} / \mathbb{F}_{p^{2}}$ that are ℓ^{n}-isogeneous, compute an isogeny $\phi: E \rightarrow E^{\prime}$.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.
- Solution (b): try all three possible order 2 kernels from both E and E^{\prime} and check when the codomain is the same.

The pure isogeny problem

Example
Choose

$$
E / \mathbb{F}_{431}: y^{2}=x^{3}+1 \quad \text { and } \quad E^{\prime} / \mathbb{F}_{431}: y^{2}=x^{3}+291 x+298
$$

These elliptic curves are $2^{2}=4$-isogenous. Problem: compute an isogeny $f: E \rightarrow E^{\prime}$.
The kernel of $f: E \rightarrow E^{\prime}$ is generated by a point $P \in E\left(\overline{\mathbb{F}_{p}}\right)$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find f.
- Solution (b): try all three possible order 2 kernels from both E and E^{\prime} and check when the codomain is the same.
Solution (b) is meet-in-the-middle: complexity $\tilde{O}\left(p^{1 / 4}\right)$.

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

2,3-isogenies over $\mathbb{F}_{431^{2}}$

Exploiting subgraphs

The SIDH graph has a \mathbb{F}_{p}-subgraph:

2,3-isogenies over $\mathbb{F}_{431^{2}}$

2,3-isogenies
over \mathbb{F}_{431}

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$.

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs...

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs... $\tilde{O}\left(p^{1 / 2}\right)$.

Exploiting subgraphs?

3-isogenies
nodes up to $\overline{\mathbb{F}_{431}}$-isomorphism

3-isogenies
nodes up to \mathbb{F}_{431}-isomorphism

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_{p}[1 / 2]$. Finding nearest node in subgraph costs... $\tilde{O}\left(p^{1 / 2}\right) . \not{\succ}$ (Delfs-Galbraith, Biasse-Jao-Sankar)

More graphs defined over \mathbb{F}_{p}

$$
\begin{gathered}
\text { From 1-dimensional } E / \mathbb{F}_{p^{2}} \\
\text { construct 2-dimensional } W(E) / \mathbb{F}_{p} \\
\text { 'Weil restriction' }
\end{gathered}
$$

This picture is very unlikely to be accurate.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$. (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1 / \sqrt{p})$.

More graphs defined over \mathbb{F}_{p}

- The associated graph of 2-dimensional objects is (heuristically) $O(\sqrt{p})$ cycles of length $O(\sqrt{p})$.
(Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1 / \sqrt{p})$. \because

More equivalent categories: lifting to \mathbb{C}

$$
\left.\begin{array}{c}
\left\{\begin{array}{c}
\text { Elliptic curves } E \text { defined over } \mathbb{C} \\
\text { with } \operatorname{End}(E)=R
\end{array}\right\} \\
\text { Here computing isogenies is easy! }
\end{array}\right\}
$$

Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of
$\left\{\begin{array}{c}\text { Elliptic curves } E \text { defined over } \mathbb{C} \\ \text { with } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.

More equivalent categories: lifting to \mathbb{C}

A well-chosen subset of

Here computing isogenies is easy!

$\left\{\begin{array}{c}\text { Supersingular elliptic curves defined over } \mathbb{F}_{q} \\ \text { with non-scalar } \phi \in \operatorname{End}(E)\end{array}\right\}$
Here computing isogenies is harder.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.
- If you can find non-scalar endomorphisms, SIDH is probably already broken by earlier work
(Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

-_(ツ)_/'

Thank you!

