How to not break SIDH ≻

Chloe Martindale¹ Lorenz Panny²

¹University of Bristol ²TU/e

CWI, Amsterdam, 10 January 2020

What is SIDH?

Recall: SIDH as an isogeny graph

- Vertices: *j*-invariants of elliptic curves defined over $\overline{\mathbb{F}_p}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

Recall: SIDH as an isogeny graph

- Vertices: *j*-invariants of elliptic curves defined over $\overline{\mathbb{F}_p}$.
- Edges: 2- and 3-isogenies of elliptic curves (up to some equivalence).

2 and 3-isogenies of elliptic curves over \mathbb{F}_{431^2}

Recall: An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Recall: An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism.

Recall: An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$

Recall: An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

 $E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$

• A point $P \in E[m]$ is called an *m*-torsion point.

Recall: An endomorphism of an elliptic curve *E* is an isogeny $E \rightarrow E$, or the zero map.

Example: The multiplication-by-*m* map

$$[m]: E \to E$$

is an endomorphism. If $m \neq 0$ in the base field, its kernel is

$$E[m] \cong \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}.$$

- A point $P \in E[m]$ is called an *m*-torsion point.
- ► The group G = ⟨P⟩ generated by an *m*-torsion point P ∈ E[m] is the kernel of an *m*-isogeny written

$$f: E \to E/G.$$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	<u>public</u>	Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$		$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$		$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$		$E/B, \varphi_B(P_A), \varphi_B(Q_A)$

- a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$	$b ^{\operatorname{random}} \{03^m - 1\}$
$\boldsymbol{A} := \langle P_A + [\boldsymbol{a}] Q_A \rangle$	$B := \langle P_B + [b]Q_B \rangle$
compute $\varphi_A \colon E \to E/A$	compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle$	$B' := \langle \varphi_{\mathbf{A}}(P_B) + [b]\varphi_{\mathbf{A}}(Q_B) \rangle$

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob
$a \xleftarrow{\text{random}} \{02^n - 1\}$	$b ^{\operatorname{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$	$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$ \begin{array}{l} \overleftarrow{A'} := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle \\ s := j((E/B)/A') \end{array} $	$B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$

Public parameters:

- ► a large prime $p = 2^n 3^m 1$ and a supersingular E/\mathbb{F}_p
- ▶ bases (P_A, Q_A) and (P_B, Q_B) of $E[2^n]$ and $E[3^m]$

Alice	public Bob
$\overset{\text{random}}{\longleftarrow} \{02^n - 1\}$	$b \xleftarrow{\text{random}} \{03^m - 1\}$
$A := \langle P_A + [a] Q_A \rangle$ compute $\varphi_A \colon E \to E/A$	$B := \langle P_B + [b]Q_B \rangle$ compute $\varphi_B \colon E \to E/B$
$E/A, \varphi_A(P_B), \varphi_A(Q_B)$	$E/B, \varphi_B(P_A), \varphi_B(Q_A)$
$A' := \langle \varphi_B(P_A) + [a] \varphi_B(Q_A) \rangle$ s := j((E/B)/A')	$B' := \langle \varphi_{A}(P_{B}) + [b]\varphi_{A}(Q_{B}) \rangle$ $s := j((E/A)/B')$

Break it by: given public info, find secret key: φ_A (or just *A*).

Here's some things that don't break it...

Extra points

Aim: given points P_B , Q_B on E, the image E/A of the secret isogeny $\varphi_A : E \to E/A$, and the images $\varphi_A(P_B)$ and $\varphi_B(Q_B)$, find φ_A .

Fact: with the parameters used in SIDH, the images $\varphi_A(P_B)$ and $\varphi_B(Q_B)$ uniquely determine the secret isogeny φ_A .

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.

Extra points: Interpolation?

- Recall: Isogenies are rational maps.
 We know enough input-output pairs to determine the map.
- → Rational function interpolation?
- \approx ...the polynomials are of exponential degree $\approx \sqrt{p}$.
- → can't even write down the result without decomposing into a sequence of smaller-degree maps.
 - No known algorithms for interpolating and decomposing at the same time.

• Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) ℓⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) lⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.
 - $\stackrel{\scriptstyle \rightarrowtail}{\succ}$ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

- Recall: we know the image under φ_A of 3^m -torsion points P_B and Q_B .
- Can we extrapolate the image under φ_A of some other (coprime) lⁿ-torsion points and exploit it?
- e.g. we win if we get the action of φ_A on the 2^{*n*}-torsion.
 - $\stackrel{\scriptstyle \rightarrowtail}{\succ}$ There's an isomorphism of groups

$$E(\mathbb{F}_{p^2}) \cong (\mathbb{Z}/2^n)^2 \times (\mathbb{Z}/3^m)^2.$$

 \implies can't learn anything about 2^n from 3^m using groups alone. (Annoying: This shows up in many disguises.)

► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

→ We can compute the image of our 3^m -torsion points on E_A under these endomorphisms.

- ► For typical SIDH parameters, we know the endomorphism ring End(*E*₀).
- ► Going back and forth to *E*⁰ yields endomorphisms of *E*^{*A*}:

- → We can compute the image of our 3^m -torsion points on E_A under these endomorphisms.
- Idea: Find an appropriate endomorphism τ of degree 3^mr; recover 3^m-part as above; brute-force the *r*emaining part.
 → image of *r*-torsion point under φ_A
 ⇒ (details) ⇒ Recover the secret φ_A.
- ☆ To get *r* small enough to be an attack, we have to change the SIDH parameters so that Alice's isogeny has a much higher degree than Bob's.

Extra points: Summary

 \sim

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

Extra points: Summary

 \sim

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.

Extra points: Summary

 Same problem all over the place: There seems to be no way to obtain *anything* from the given action-on-3^m-torsion except what's given.

 Petit's approach cannot be expected to work for 'real' (symmetric, two-party) SIDH.

► Life sucks.

 $\overset{\cdot\cdot}{\succ}$

__(יא)_/_

The pure isogeny problem

Fundamental problem: given supersingular *E* and E'/\mathbb{F}_{p^2} that are ℓ^n -isogeneous, compute an isogeny $\phi : E \to E'$.

The pure isogeny problem

Example Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

The pure isogeny problem

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

The pure isogeny problem

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

 Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*. The pure isogeny problem

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.

The pure isogeny problem

Example

Choose

 $E/\mathbb{F}_{431}: y^2 = x^3 + 1$ and $E'/\mathbb{F}_{431}: y^2 = x^3 + 291x + 298.$

These elliptic curves are $2^2 = 4$ -isogenous. Problem: compute an isogeny $f : E \to E'$.

The kernel of $f : E \to E'$ is generated by a point $P \in E(\overline{\mathbb{F}_p})$ of order 4.

- Solution (a): try all nine possible order 4 kernels and use Vélu's formulas to find *f*.
- ▶ Solution (b): try all three possible order 2 kernels from both *E* and *E'* and check when the codomain is the same.
 Solution (b) is meet-in-the-middle: complexity Õ(p^{1/4}).

The SIDH graph has a \mathbb{F}_p -subgraph:

The SIDH graph has a \mathbb{F}_p -subgraph:

2, 3-isogenies over \mathbb{F}_{431^2}

The SIDH graph has a \mathbb{F}_p -subgraph:

2, 3-isogenies over \mathbb{F}_{431^2}

2, 3-isogenies over \mathbb{F}_{431}

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}}\textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431} \textbf{-} \textbf{isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$.

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs...

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431}\textbf{-isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

 $\begin{array}{c} \textbf{3-isogenies} \\ \textbf{nodes up to } \overline{\mathbb{F}_{431}} \textbf{-isomorphism} \end{array}$

 $\begin{array}{l} \textbf{3-isogenies} \\ \textbf{nodes up to } \mathbb{F}_{431} \textbf{-} \textbf{isomorphism} \end{array}$

Kuperberg's subexponential quantum algorithm to compute a hidden shift applies to this! Complexity: $L_p[1/2]$. Finding nearest node in subgraph costs... $\tilde{O}(p^{1/2})$.

This picture is very unlikely to be accurate.

 ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

- ► The associated graph of 2-dimensional objects is (heuristically) O(√p) cycles of length O(√p).
 (Superspecial principally polarized abelian surfaces if you care)
- If your two elliptic curves are in the same cycle, Kuperberg's algorithm can find the isogeny in subexponential time.
- Probability of being in the same cycle: $O(1/\sqrt{p})$.

More equivalent categories: lifting to \mathbb{C}

 $\left\{ \begin{array}{c} \text{Elliptic curves } E \text{ defined over } \mathbb{C} \\ \text{with } \text{End}(E) = R \end{array} \right\}$ Here computing isogenies is easy! Non-supersingular elliptic curves defined over \mathbb{F}_q with $\operatorname{End}(E) = R$ Here computing isogenies is harder.

More equivalent categories: lifting to \mathbb{C} A well-chosen subset of Elliptic curves *E* defined over \mathbb{C} with $\phi \in \text{End}(E)$ Here computing isogenies is easy! Supersingular elliptic curves defined over \mathbb{F}_q with non-scalar $\phi \in \operatorname{End}(E)$ Here computing isogenies is harder.

- Computing the equivalence is slow.
- Finding a non-scalar endomorphism is hard.

- Finding a non-scalar endomorphism is hard.
- If you can find non-scalar endomorphisms, SIDH is probably already broken by earlier work (Kohel-Lauter-Petit-Tignol and Galbraith-Petit-Shani-Ti).

-_(`ン)_/־

Thank you!