
Isogeny-based cryptography:
why, how, and the latest news

Chloe Martindale

University of Bristol

2nd June 2021

Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications. Since 2018:

I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .

1 / 20

Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications. Since 2018:

I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .

1 / 20

Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications. Since 2018:

I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .

1 / 20

Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications.

Since 2018:
I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .

1 / 20

Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications. Since 2018:

I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .

1 / 20

Isogeny-based cryptography: why not?

I Newest of all pq schemes less confidence in security.
I Oldest practical idea “still standing” is from 2011.

I Rich mathematical structure many attack avenues,
maybe not all explored.

I Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

I Difficult to make concrete parameter choices.
I Slow: Fastest key encapsulation is ≈ ×25 slower than ECC

or the fastest pq option (lattices).

2 / 20

Isogeny-based cryptography: why not?

I Newest of all pq schemes less confidence in security.
I Oldest practical idea “still standing” is from 2011.

I Rich mathematical structure many attack avenues,
maybe not all explored.

I Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

I Difficult to make concrete parameter choices.
I Slow: Fastest key encapsulation is ≈ ×25 slower than ECC

or the fastest pq option (lattices).

2 / 20

Isogeny-based cryptography: why not?

I Newest of all pq schemes less confidence in security.
I Oldest practical idea “still standing” is from 2011.

I Rich mathematical structure many attack avenues,
maybe not all explored.

I Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

I Difficult to make concrete parameter choices.

I Slow: Fastest key encapsulation is ≈ ×25 slower than ECC
or the fastest pq option (lattices).

2 / 20

Isogeny-based cryptography: why not?

I Newest of all pq schemes less confidence in security.
I Oldest practical idea “still standing” is from 2011.

I Rich mathematical structure many attack avenues,
maybe not all explored.

I Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

I Difficult to make concrete parameter choices.
I Slow: Fastest key encapsulation is ≈ ×25 slower than ECC

or the fastest pq option (lattices).

2 / 20

Isogeny-based cryptography: how?

I Hard Problems in isogeny-based cryptography are
(mostly) based on elliptic curves.

I On a high level, this can be abstracted away. . .

3 / 20

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?

4 / 20

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?

4 / 20

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?

4 / 20

Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?

4 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!

5 / 20

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes ’18)

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

6 / 20

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes ’18)

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

6 / 20

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes ’18)

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.

6 / 20

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

7 / 20

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

7 / 20

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

7 / 20

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

7 / 20

Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.

·g
·g

·g

·g

·g

·g

·g

·g

·g

·g
·g ·g ·g

·g

·g2

·g2

·g2

·g2

·g2
·g2

·g

·g4

·g4

·g4

·g

·g4

·g8

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12 g13
g14

g15

g16

g17

g18

g19

g20

g21
g22

7 / 20

Square-and-multiply

·g
·g

·g
·g
·g
·g
·g
·g

·g ·g ·g ·g ·g
·g
·g
·g
·g
·g

·g
·g

·g·g·g

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

·g2
·g2

·g2

·g2

·g2

·g2

·g2

·g2

·g2
·g2·g2·g2·g2·g

2
·g2
·g2
·g2
·g2

·g2
·g2·g2·g2·g2

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

·g4
·g4

·g4

·g4

·g4

·g4

·g4

·g4

·g4
·g4·g4·g4·g4·g

4
·g4
·g4
·g4
·g4

·g4
·g4·g4·g4·g4

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

·g8
·g8

·g8

·g8

·g8

·g8

·g8

·g8

·g8
·g8·g8·g8·g8·g

8
·g8
·g8
·g8
·g8

·g8
·g8·g8·g8·g8

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

8 / 20

Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13

g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11g12

g13
g14

g15

g16

g17

g18

g19

g20

g21

g22

g0

g1

g2

g3

g4

g5

g6

g7g8

g9

g10

g11 g12

g13

g14

g15
g16

g17

g18

g19
g20

g21

g22

Cycles are compatible: [right, then left] = [left, then right], etc.

8 / 20

Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

8 / 20

Square-and-multiply
g0

g1
g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22 g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10
g11 g12 g13

g14
g15

g16

g17

g18

g19
g20

g21g22

Cycles are compatible: [right, then left] = [left, then right], etc.

8 / 20

Union of cycles: rapid mixing
g0

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

9 / 20

Union of cycles: rapid mixing

g0
g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11 g12
g13

g14

g15

g16

g17

g18

g19

g20

g21
g22

CSIDH: Nodes are now elliptic curves and edges are isogenies.

9 / 20

Graphs of elliptic curves

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

10 / 20

Graphs of elliptic curves

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.

Edges: 3-, 5-, and 7-isogenies.

10 / 20

Graphs of elliptic curves

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.

10 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l,E) 7→ l ∗ E.

11 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l,E) 7→ l ∗ E.

11 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H.

I The action of a well-chosen l ∈ H on S moves the elliptic
curves one step around one of the cycles.

H × S → S
(l,E) 7→ l ∗ E.

11 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l3,E) 7→ l3 ∗ E.

11 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l5,E) 7→ l5 ∗ E.

11 / 20

Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.
I Replace G by the set S of supersingular elliptic curves

EA : y2 = x3 + Ax2 + x over F419.
I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l7,E) 7→ l7 ∗ E.

11 / 20

Graphs of elliptic curves

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)

12 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3
↑
, l7
−1, l3, l5

−1] [l5
↑
, l7, l3

−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1

↑
, l3, l5

−1] [l5, l7
↑
, l3
−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3
↑
, l5
−1] [l5, l7, l3

−1

↑
, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1

↑
] [l5, l7, l3

−1, l5
↑
]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3
↑
, l7
−1, l3, l5

−1] [l5
↑
, l7, l3

−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1

↑
, l3, l5

−1] [l5, l7
↑
, l3
−1, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3
↑
, l5
−1] [l5, l7, l3

−1

↑
, l5]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1

↑
] [l5, l7, l3

−1, l5
↑
]

13 / 20

Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]

13 / 20

Ex: CSI-FiSh (S ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren ‘19)
Identification scheme from H × S→ S:

Prover Public Verifier
E ∈ S, li ∈ H

si ← $Z

sk =
∏

li
si ,

pk = sk ∗ E
pk // pk

c← $ {0, 1}c
ppti ← $Z

esk =
∏

li
ti ,

epk1 = esk ∗ E,

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).

After k challenges c, an imposter succeeds with prob 2−k.
14 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E

��

Eepk

Epk

Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E

��

// Eepk

Epk

Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E

��

// Eepk

��
Epk Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find an isogeny∗ E→ E′

(∗rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E

��

// Eepk

��
Epk // Ever

public, secret, ephemeral secret, public challenge, public proof

15 / 20

Ex: SIDH (De Feo-Plut-Jao ‘11) / SIKE (NIST Round 3 alternate)
Main idea: Graph-walking Diffie-Hellman on this graph:

I Vertices: isomorphism classes of elliptic curves.
I Edges: 2- and 3-isogenies of elliptic curves (up to ∼=).

2 and 3-isogenies of elliptic curves over F4312

16 / 20

Ex: SIDH (De Feo-Plut-Jao ‘11) / SIKE (NIST Round 3 alternate)
Main idea: Graph-walking Diffie-Hellman on this graph:

I Vertices: isomorphism classes of elliptic curves.
I Edges: 2- and 3-isogenies of elliptic curves (up to ∼=).

2 and 3-isogenies of elliptic curves over F4312

16 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in CSIDH, CSI-FiSh, SQISign etc:
Given elliptic curves E and E′ ∈ S,

find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)

17 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).

Results:
I Petit ‘17: poly-time attack when B > 4A > log(p).
I New attack:

I Poly-time when B > log(p) + A or B > 1
2 log(p) + 2A.

I Improves on best known attack when B > 1
2 log(p).

I Backdoor primes and starting curves.

18 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).
Results:

I Petit ‘17: poly-time attack when B > 4A > log(p).

I New attack:
I Poly-time when B > log(p) + A or B > 1

2 log(p) + 2A.
I Improves on best known attack when B > 1

2 log(p).
I Backdoor primes and starting curves.

18 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).
Results:

I Petit ‘17: poly-time attack when B > 4A > log(p).
I New attack:

I Poly-time when B > log(p) + A or B > 1
2 log(p) + 2A.

I Improves on best known attack when B > 1
2 log(p).

I Backdoor primes and starting curves.

18 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).
Results:

I Petit ‘17: poly-time attack when B > 4A > log(p).
I New attack:

I Poly-time when B > log(p) + A or B > 1
2 log(p) + 2A.

I Improves on best known attack when B > 1
2 log(p).

I Backdoor primes and starting curves.

18 / 20

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).
Results:

I Petit ‘17: poly-time attack when B > 4A > log(p).
I New attack:

I Poly-time when B > log(p) + A or B > 1
2 log(p) + 2A.

I Improves on best known attack when B > 1
2 log(p).

I Backdoor primes and starting curves.

18 / 20

Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.

19 / 20

Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.

19 / 20

Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.

19 / 20

Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.

19 / 20

Thank you!

20 / 20

