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Isogeny-based cryptography: why?

» Based on hard problems believed to (still) be hard for
quantum computers
» Low memory requirements
» Lowest of all post-quantum candidates (by far)
» Smallest option similar size to classical ECC
» Made up of ECC subroutines ~~ quite compatible with
current small-device implementations
» Rich mathematical structure ~» most flexible*
post-quantum applications. Since 2018:

» Only pq non-interactive key exchange (c.f. Diffie-Hellman)
Two different signature schemes

Oblivious pseudorandom functions

Threshold schemes

ElGamal-style message encryption
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Isogeny-based cryptography: why not?

» Newest of all pq schemes ~~ less confidence in security.
» Oldest practical idea “still standing” is from 2011.
» Rich mathematical structure ~» many attack avenues,
maybe not all explored.

» Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

» Difficult to make concrete parameter choices.

» Slow: Fastest key encapsulation is ~ x25 slower than ECC
or the fastest pq option (lattices).
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Isogeny-based cryptography: how?

» Hard Problems in isogeny-based cryptography are
(mostly) based on elliptic curves.

» On a high level, this can be abstracted away. ..
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Graph walking Diffie-Hellman?

¥

Problem:
It is trivial to find paths (subtract coordinates).

What to do?
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» Isogenies are a source of exponentially-sized graphs.
» We can walk efficiently on these graphs.
» Fast mixing: short paths to (almost) all nodes.

» No known efficient algorithms to recover paths
from endpoints.

» Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Ex: CSIDH (Castryck-Lange-M.-Panny-Renes "18)

Traditionally, Diffie-Hellman works in a group G via the map
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Ex: CSIDH (Castryck-Lange-M.-Panny-Renes "18)

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.

6/20



Square-and-multiply

Suppose G = 7,/23 and that Alice computes g*°.
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Square-and-multiply
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Square-and-multiply
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Square-and-multiply

Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves
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Graphs of elliptic curves
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Graphs of elliptic curves
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Nodes: Supersingular curves Ex: y* = x° + Ax* + x over Fao
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

» We want to replace the exponentiation map

ZxG — G
(x,8) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Ex: yZ = x% + Ax? + x over Fy19.

» Replace Z by a commutative group H.

» The action of a well-chosen [ € H on S moves the elliptic
curves one step around one of the cycles.

HxS — S
([7,E) — [7*E.
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Graphs of elliptic curves

A 3-isogeny
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Diffie and Hellman go to the CSIDH
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Diffie and Hellman go to the CSIDH
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Ex: CSI-FiSh (s ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren 19)
Identification scheme from H x S — S:

Prover Public Verifier
EeS l,eH
s; «— $Z
sk=]]17,
ok — sk E—P_ pk
. c+${0,1}
b $7 -
esk =[] 1",
epk, = esk x E,
epk, = esk - sk™¢ pk,epk, ,epk,

 > check:

epk; = epk, * ([sk°] = E).

After k challenges c, an imposter succeeds with prob 2.
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Ex: SQISlgI’I (De Feo-Kohel-Leroux-Petit-Wesolowski “20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E’ € S, find a € H such that
axE=EFE.
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Ex: SIDH (De Feo-Plut-Jao “11) / SIKE (NIST Round 3 alternate)
Main idea: Graph-walking Diffie-Hellman on this graph:
» Vertices: isomorphism classes of elliptic curves.
» Edges: 2- and 3-isogenies of elliptic curves (up to =).

2 and 3-isogenies of elliptic curves over Fyz;>
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A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in CSIDH, CSI-FiSh, SQISign etc:
Given elliptic curves Eand E’ € S,
find an isogeny E — E'.
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A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves Eand E’ € S,
and given some info about an isogeny E — E/,
find an isogeny E — E'.

vV v.vY

‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

“17 Poly-time attack on overstretched parameters (petit)
‘21 Poly-time attack on SIDH group key exchange (us)
‘21 Poly-time attack on SIDH-based OPRF

(Basso-Kutas-Merz-Petit-Sanso)
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> InSIKE: A ~ B ~ 1 log(p).
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A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH /SIKE:
Given elliptic curves Eand E’ € S,
and given some info about an isogeny E — E/,
find an isogeny E — E'.

Parameters:
» Let Alice and Bob’s path lengths be A and B.
> InSIKE: A ~ B ~ 1 log(p).
Results:
» Petit “17: poly-time attack when B > 4A > log(p).
» New attack:
» Poly-time when B > log(p) + A or B > 1log(p) + 2A.

» Improves on best known attack when B > 1 log(p).
» Backdoor primes and starting curves.
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torsion-point attacks most likely attack avenue.
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» SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

» CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

» CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

» SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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Thank you!
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