Isogeny-based cryptography: why, how, and the latest news

Chloe Martindale

University of Bristol

2nd June 2021

Isogeny-based cryptography: why?

- Based on hard problems believed to (still) be hard for quantum computers

Isogeny-based cryptography: why?

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
- Lowest of all post-quantum candidates (by far)
- Smallest option similar size to classical ECC

Isogeny-based cryptography: why?

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
- Lowest of all post-quantum candidates (by far)
- Smallest option similar size to classical ECC
- Made up of ECC subroutines \rightsquigarrow quite compatible with current small-device implementations

Isogeny-based cryptography: why?

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
- Lowest of all post-quantum candidates (by far)
- Smallest option similar size to classical ECC
- Made up of ECC subroutines \rightsquigarrow quite compatible with current small-device implementations
- Rich mathematical structure \rightsquigarrow most flexible* post-quantum applications.

Isogeny-based cryptography: why?

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
- Lowest of all post-quantum candidates (by far)
- Smallest option similar size to classical ECC
- Made up of ECC subroutines \rightsquigarrow quite compatible with current small-device implementations
- Rich mathematical structure \rightsquigarrow most flexible* post-quantum applications. Since 2018:
- Only pq non-interactive key exchange (c.f. Diffie-Hellman)
- Two different signature schemes
- Oblivious pseudorandom functions
- Threshold schemes
- ElGamal-style message encryption
- ...

Isogeny-based cryptography: why not?

- Newest of all pq schemes \rightsquigarrow less confidence in security.
- Oldest practical idea "still standing" is from 2011.

Isogeny-based cryptography: why not?

- Newest of all pq schemes \rightsquigarrow less confidence in security.
- Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure \rightsquigarrow many attack avenues, maybe not all explored.

Isogeny-based cryptography: why not?

- Newest of all pq schemes \rightsquigarrow less confidence in security.
- Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure \rightsquigarrow many attack avenues, maybe not all explored.
- Lowest memory, most flexible Hard Problem admits a subexponential quantum attack, the complexity of which is still an active research topic.
- Difficult to make concrete parameter choices.

Isogeny-based cryptography: why not?

- Newest of all pq schemes \rightsquigarrow less confidence in security.
- Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure \rightsquigarrow many attack avenues, maybe not all explored.
- Lowest memory, most flexible Hard Problem admits a subexponential quantum attack, the complexity of which is still an active research topic.
- Difficult to make concrete parameter choices.
- Slow: Fastest key encapsulation is $\approx \times 25$ slower than ECC or the fastest pq option (lattices).

Isogeny-based cryptography: how?

- Hard Problems in isogeny-based cryptography are (mostly) based on elliptic curves.
- On a high level, this can be abstracted away...

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Graph walking Diffie-Hellman?

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

Big picture Θ

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these not enough for crypto!

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group G via the map

$$
\begin{array}{clc}
\mathbb{Z} \times G & \rightarrow & G \\
(x, g) & \mapsto g^{x} .
\end{array}
$$

Shor's algorithm quantumly computes x from g^{x} in any group in polynomial time.
\rightsquigarrow Idea:
Replace exponentiation on the group G by a group action of a group H on a set S :

$$
H \times S \rightarrow S
$$

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Suppose $G \cong \mathbb{Z} / 23$ and that Alice computes g^{13}.

Square-and-multiply

Square-and-multiply

Square-and-multiply

Square-and-multiply

Cycles are compatible: [right, then left $]=[l e f t$, then right $]$, etc.

Union of cycles: rapid mixing

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

Graphs of elliptic curves

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Graphs of elliptic curves

Nodes: Supersingular curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}. Edges: 3-, 5-, and 7-isogenies.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{aligned}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{aligned}
$$

by a group action on a set.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{aligned}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{aligned}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{aligned}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{aligned}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H.

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H.
- The action of a well-chosen $\mathfrak{l} \in H$ on S moves the elliptic curves one step around one of the cycles.

$$
\begin{array}{rlc}
H \times S & \rightarrow & S \\
\left(\mathfrak{l}_{3}, E\right) & \mapsto & \mathfrak{l}_{3} * E .
\end{array}
$$

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H.
- The action of a well-chosen $\mathfrak{l} \in H$ on S moves the elliptic curves one step around one of the cycles.

$$
\begin{array}{rlc}
H \times S & \rightarrow & S \\
\left(\mathfrak{l}_{5}, E\right) & \mapsto & \mathfrak{l}_{5} * E .
\end{array}
$$

Quantumifying Exponentiation

- We want to replace the exponentiation map

$$
\begin{array}{ccc}
\mathbb{Z} \times G & \rightarrow G \\
(x, g) & \mapsto g^{x}
\end{array}
$$

by a group action on a set.

- Replace G by the set S of supersingular elliptic curves $E_{A}: y^{2}=x^{3}+A x^{2}+x$ over \mathbb{F}_{419}.
- Replace \mathbb{Z} by a commutative group H.
- The action of a well-chosen $\mathfrak{l} \in H$ on S moves the elliptic curves one step around one of the cycles.

$$
\begin{array}{rcc}
H \times S & \rightarrow & S \\
\left(\mathfrak{l}_{7}, E\right) & \mapsto & \mathfrak{l}_{7} * E .
\end{array}
$$

Graphs of elliptic curves

Diffie and Hellman go to the CSIDH

$$
\begin{gathered}
\text { Alice } \\
{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, l_{3}{ }^{-1}, \mathfrak{l}_{5}\right]}
\end{gathered}
$$

Diffie and Hellman go to the CSIDH

$$
\underset{\underset{\uparrow}{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]} \text { Alice }}{\text { and }}
$$

Bob

$$
\left[\mathfrak{l}_{\uparrow}, \mathfrak{l}_{7}, \mathfrak{l}_{3}^{-1}, \mathfrak{l}_{5}\right]
$$

Diffie and Hellman go to the CSIDH

$$
\underset{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \underset{\uparrow}{\text { Alice }}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}{ }
$$

Bob
$\left[\underset{\uparrow}{\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}-1, \mathfrak{l}_{5}\right]}\right.$

Diffie and Hellman go to the CSIDH

$$
\begin{aligned}
& \text { Alice } \\
& {\left[l_{3}, \mathfrak{l}_{7}{ }^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]} \\
& \uparrow
\end{aligned}
$$

Bob

$$
\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}-1, \mathfrak{l}_{5}\right]
$$

Diffie and Hellman go to the CSIDH

$$
\underset{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}{\text { Alice }}
$$

Bob
$\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}{ }^{-1}, \underset{\uparrow}{l_{5}}\right]$

Diffie and Hellman go to the CSIDH

Diffie and Hellman go to the CSIDH

$$
\underset{\underset{\uparrow}{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]} \text { Alice }}{ }
$$

$\begin{gathered} \text { Bob } \\ {\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}{ }^{-1},\right.} \end{gathered}$

Diffie and Hellman go to the CSIDH

$$
\underset{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}{\text { Alice }}
$$

Bob

$$
\left[\mathfrak{l}_{5}, \mathfrak{l}_{\uparrow}, \mathfrak{l}_{3}^{-1}, \mathfrak{l}_{5}\right]
$$

Diffie and Hellman go to the CSIDH

$$
\begin{aligned}
& \text { Alice } \\
& {\left[l_{3}, \mathfrak{l}_{7}{ }^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}{ }^{-1}\right]} \\
& \uparrow
\end{aligned}
$$

Bob
$\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}{ }_{\uparrow}^{-1}, \mathfrak{l}_{5}\right]$

Diffie and Hellman go to the CSIDH

$$
\underset{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}{\text { Alice }}
$$

Bob

$$
\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, \mathfrak{l}_{3}^{-1}, \underset{\uparrow}{\left.\mathfrak{l}_{5}\right]}\right.
$$

Diffie and Hellman go to the CSIDH

$$
\begin{gathered}
\text { Alice } \\
{\left[\mathfrak{l}_{3}, \mathfrak{l}_{7}^{-1}, \mathfrak{l}_{3}, \mathfrak{l}_{5}^{-1}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\text { Bob } \\
{\left[\mathfrak{l}_{5}, \mathfrak{l}_{7}, l_{3}{ }^{-1}, \mathfrak{l}_{5}\right]}
\end{gathered}
$$

Ex: CSI-FiSh (S ‘06, D-G '18, Beullens-Kleinjung-Vercauteren '19)

 Identification scheme from $H \times S \rightarrow S$:$$
\begin{aligned}
& \text { Prover } \\
& \text { Public } \\
& E \in S, \mathfrak{l}_{i} \in H \\
& s_{i} \leftarrow \$ \mathbb{Z} \\
& \mathrm{sk}=\prod \mathfrak{l}_{i}^{s_{i}} \text {, } \\
& \mathrm{pk}=\mathrm{sk} * E \xrightarrow{\mathrm{pk}} \mathrm{pk} \\
& \text { c } \\
& c \leftarrow \$\{0,1\} \\
& t_{i} \leftarrow \$ \mathbb{Z} \\
& \text { esk }=\prod \mathfrak{r}_{i}^{t_{i}}, \\
& \mathrm{epk}_{1}=\mathrm{esk} * E, \\
& \mathrm{epk}_{2}=\mathrm{esk} \cdot \mathrm{sk}^{-\mathrm{c}} \quad \mathrm{pk}, \mathrm{epk}_{1}, \mathrm{epk}_{2} \\
& \text { check: } \\
& \mathrm{epk}_{1}=\mathrm{epk}_{2} *\left(\left[\mathrm{sk}^{c}\right] * E\right) .
\end{aligned}
$$

After k challenges c, an imposter succeeds with prob 2^{-k}.

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find $\mathfrak{a} \in H$ such that

$$
\mathfrak{a} * E=E^{\prime} .
$$

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny $E \rightarrow E^{\prime}$
(* rational map + group homomorphism)

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny $E \rightarrow E^{\prime}$
(* rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(* rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

$$
\stackrel{1}{2}_{E_{\mathrm{pk}}}^{E}
$$

public, secret, ephemeral secret, public challenge, public proof

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny* $E \rightarrow E^{\prime}$
(*rational map + group homomorphism)
SQISign is a newer signature scheme based on this idea:

public, secret, ephemeral secret, public challenge, public proof

Ex: SIDH (De Feo-Plut-Jao ‘11) / SIKE (NIST Round 3 alternate) Main idea: Graph-walking Diffie-Hellman on this graph:

Ex: SIDH (De Feo-Plut-Jao ‘11) / SIKE (NIST Round 3 alternate) Main idea: Graph-walking Diffie-Hellman on this graph:

- Vertices: isomorphism classes of elliptic curves.
- Edges: 2- and 3-isogenies of elliptic curves (up to \cong).

2 and 3-isogenies of elliptic curves over $\mathbb{F}_{431^{2}}$

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in CSIDH, CSI-FiSh, SQISign etc:
Given elliptic curves E and $E^{\prime} \in S$, find an isogeny $E \rightarrow E^{\prime}$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

- '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

- '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

- '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)
- '21 Poly-time attack on SIDH group key exchange (Us)

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

- '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)
- '21 Poly-time attack on SIDH group key exchange (Us)
- '21 Poly-time attack on SIDH-based OPRF (Basso-Kutas-Merz-Petit-Sanso)

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log (p)$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$ find an isogeny $E \rightarrow E^{\prime}$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log (p)$.

Results:

- Petit '17: poly-time attack when $B>4 A>\log (p)$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log (p)$.

Results:

- Petit '17: poly-time attack when $B>4 A>\log (p)$.
- New attack:
- Poly-time when $B>\log (p)+A$ or $B>\frac{1}{2} \log (p)+2 A$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log (p)$.

Results:

- Petit '17: poly-time attack when $B>4 A>\log (p)$.
- New attack:
- Poly-time when $B>\log (p)+A$ or $B>\frac{1}{2} \log (p)+2 A$.
- Improves on best known attack when $B>\frac{1}{2} \log (p)$.

A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

> Hard Problem in SIDH/SIKE:
> Given elliptic curves E and $E^{\prime} \in S$, and given some info about an isogeny $E \rightarrow E^{\prime}$, find an isogeny $E \rightarrow E^{\prime}$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log (p)$.

Results:

- Petit '17: poly-time attack when $B>4 A>\log (p)$.
- New attack:
- Poly-time when $B>\log (p)+A$ or $B>\frac{1}{2} \log (p)+2 A$.
- Improves on best known attack when $B>\frac{1}{2} \log (p)$.
- Backdoor primes and starting curves.

Summary and overview

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.

Summary and overview

- SIKE ‘ 11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.

Summary and overview

- SIKE ‘ 11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.

Summary and overview

- SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.
- SQISign '20 Digital signature. Small, slow, clean security assumption, no known attack avenues.

Thank you!

