Isogeny-based cryptography: why, how, and the latest news

Chloe Martindale

University of Bristol

2nd June 2021

 Based on hard problems believed to (still) be hard for quantum computers

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
 - Lowest of all post-quantum candidates (by far)
 - Smallest option similar size to classical ECC

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
 - Lowest of all post-quantum candidates (by far)
 - Smallest option similar size to classical ECC
- ► Made up of ECC subroutines ~> quite compatible with current small-device implementations

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
 - Lowest of all post-quantum candidates (by far)
 - Smallest option similar size to classical ECC
- ► Made up of ECC subroutines ~→ quite compatible with current small-device implementations
- Rich mathematical structure ~> most flexible* post-quantum applications.

- Based on hard problems believed to (still) be hard for quantum computers
- Low memory requirements
 - Lowest of all post-quantum candidates (by far)
 - Smallest option similar size to classical ECC
- ► Made up of ECC subroutines ~→ quite compatible with current small-device implementations
- Rich mathematical structure ~> most flexible* post-quantum applications. Since 2018:
 - Only pq non-interactive key exchange (c.f. Diffie-Hellman)
 - Two different signature schemes
 - Oblivious pseudorandom functions
 - Threshold schemes
 - ElGamal-style message encryption
 - ▶ ...

- ► Newest of all pq schemes ~> less confidence in security.
 - Oldest practical idea "still standing" is from 2011.

- ► Newest of all pq schemes ~> less confidence in security.
 - Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure ~> many attack avenues, maybe not all explored.

- ► Newest of all pq schemes ~> less confidence in security.
 - Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure ~>> many attack avenues, maybe not all explored.
- Lowest memory, most flexible Hard Problem admits a subexponential quantum attack, the complexity of which is still an active research topic.
 - Difficult to make concrete parameter choices.

- ► Newest of all pq schemes ~> less confidence in security.
 - Oldest practical idea "still standing" is from 2011.
- Rich mathematical structure ~>> many attack avenues, maybe not all explored.
- Lowest memory, most flexible Hard Problem admits a subexponential quantum attack, the complexity of which is still an active research topic.
 - Difficult to make concrete parameter choices.
- ► Slow: Fastest key encapsulation is ≈ ×25 slower than ECC or the fastest pq option (lattices).

- Hard Problems in isogeny-based cryptography are (mostly) based on elliptic curves.
- On a high level, this can be abstracted away...

Problem: It is trivial to find paths (subtract coordinates). What to do?

• <u>Isogenies</u> are a source of exponentially-sized graphs.

Big picture $\, \wp \,$

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

- <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some *well-behaved* 'directions' to describe paths. More later.

It is easy to construct graphs that satisfy *almost* all of these — not enough for crypto!

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group G via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

Ex: CSIDH (Castryck-Lange-M.-Panny-Renes '18)

Traditionally, Diffie-Hellman works in a group *G* via the map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x. \end{array}$$

Shor's algorithm quantumly computes x from g^x in any group in polynomial time.

 \rightsquigarrow Idea:

Replace exponentiation on the group *G* by a group action of a group *H* on a set *S*:

$$H \times S \rightarrow S.$$

o¹⁹

g¹⁵

¢g¹³

• g¹¹

8⁹

14

 g^6

*s*²¹

 g^{13}

8⁷

8³ 8⁵

Cycles are compatible: [right, then left] = [left, then right], etc.

Union of cycles: rapid mixing g^0 g^1 g²² g^{21} g^2 g^3 g^{20} g^4 g^{19} g¹⁸ g^5 g^6 g^{17} g^{16} g^7 g^{15} g^8 g^{14} g⁹ g^{13} g^{10} g^{12} g^{11}

9 / 20

Union of cycles: rapid mixing

CSIDH: Nodes are now elliptic curves and edges are isogenies.

Graphs of elliptic curves

Graphs of elliptic curves

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} .

Graphs of elliptic curves

Nodes: Supersingular curves E_A : $y^2 = x^3 + Ax^2 + x$ over \mathbb{F}_{419} . Edges: 3-, 5-, and 7-isogenies.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

by a group action on a set.

▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace \mathbb{Z} by a commutative group *H*.

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace \mathbb{Z} by a commutative group *H*.
- ► The action of a well-chosen l ∈ H on S moves the elliptic curves one step around one of the cycles.

$$\begin{array}{rccc} H \times S & \to & S \\ (\mathfrak{l}_3, E) & \mapsto & \mathfrak{l}_3 * E. \end{array}$$

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace \mathbb{Z} by a commutative group *H*.
- ► The action of a well-chosen l ∈ H on S moves the elliptic curves one step around one of the cycles.

$$\begin{array}{rccc} H \times S & \to & S \\ (\mathfrak{l}_5, E) & \mapsto & \mathfrak{l}_5 * E. \end{array}$$

• We want to replace the exponentiation map

$$\begin{array}{rcccc} \mathbb{Z} \times G & \to & G \\ (x,g) & \mapsto & g^x \end{array}$$

- ▶ Replace G by the set S of supersingular elliptic curves
 E_A: y² = x³ + Ax² + x over 𝔽₄₁₉.
- Replace \mathbb{Z} by a commutative group *H*.
- ► The action of a well-chosen l ∈ H on S moves the elliptic curves one step around one of the cycles.

$$\begin{array}{rccc} H \times S & \to & S \\ (\mathfrak{l}_7, E) & \mapsto & \mathfrak{l}_7 * E. \end{array}$$

Graphs of elliptic curves

Ex: CSI-FiSh (S '06, D-G '18, Beullens-Kleinjung-Vercauteren '19) Identification scheme from $H \times S \rightarrow S$:

After *k* challenges *c*, an imposter succeeds with prob 2^{-k} .

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find $\mathfrak{a} \in H$ such that $\mathfrak{a} * E = E'$.

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny^{*} $E \rightarrow E'$

(* rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

E \downarrow E_{pk}

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Hard Problem in CSIDH, CSI-FiSh, etc: Given elliptic curves *E* and $E' \in S$, find an isogeny* $E \rightarrow E'$

(*rational map + group homomorphism)

SQISign is a newer signature scheme based on this idea:

Ex: SIDH (De Feo-Plut-Jao '11) / SIKE (NIST Round 3 alternate) Main idea: Graph-walking Diffie-Hellman on this graph:

Ex: SIDH (De Feo-Plut-Jao '11) / SIKE (NIST Round 3 alternate)

Main idea: Graph-walking Diffie-Hellman on this graph:

- Vertices: isomorphism classes of elliptic curves.
- ▶ **Edges**: 2- and 3-isogenies of elliptic curves (up to \cong).

2 and 3-isogenies of elliptic curves over \mathbb{F}_{431^2}

Hard Problem in CSIDH, CSI-FiSh, SQISign etc: Given elliptic curves *E* and $E' \in S$, find an isogeny $E \rightarrow E'$.

Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

► '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

- ► '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)

- ► '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)
- ► '21 Poly-time attack on SIDH group key exchange (Us)

- ► '16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)
- '17 Poly-time attack on overstretched parameters (Petit)
- ► '21 Poly-time attack on SIDH group key exchange (Us)
- '21 Poly-time attack on SIDH-based OPRF (Basso-Kutas-Merz-Petit-Sanso)
Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log(p)$.

Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

Parameters:

- Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log(p)$.

Results:

• Petit '17: poly-time attack when $B > 4A > \log(p)$.

Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

Parameters:

- ► Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log(p)$.

Results:

- Petit '17: poly-time attack when $B > 4A > \log(p)$.
- New attack:
 - Poly-time when $B > \log(p) + A$ or $B > \frac{1}{2}\log(p) + 2A$.

Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

Parameters:

- ► Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log(p)$.

Results:

- Petit '17: poly-time attack when $B > 4A > \log(p)$.
- New attack:
 - Poly-time when $B > \log(p) + A$ or $B > \frac{1}{2}\log(p) + 2A$.
 - Improves on best known attack when $B > \frac{1}{2} \log(p)$.

Hard Problem in SIDH/SIKE: Given elliptic curves *E* and $E' \in S$, and given some info about an isogeny $E \rightarrow E'$, find an isogeny $E \rightarrow E'$.

Parameters:

- ► Let Alice and Bob's path lengths be A and B.
- In SIKE: $A \approx B \approx \frac{1}{2} \log(p)$.

Results:

- Petit '17: poly-time attack when $B > 4A > \log(p)$.
- New attack:
 - Poly-time when $B > \log(p) + A$ or $B > \frac{1}{2}\log(p) + 2A$.
 - Improves on best known attack when $B > \frac{1}{2} \log(p)$.
 - Backdoor primes and starting curves.

 SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.

- SIKE '11 KEM. Best-studied, in NIST, fast, small-ish, torsion-point attacks most likely attack avenue.
- CSIDH '18 Key exchange. Small, many applications (c.f. group actions), fast-ish, known quantum attack needs further study, other attack avenues non-obvious.
- CSI-FiSh '19 Digital signature. Small-ish, flexible, fast-ish, known quantum attack needs further study.
- SQISign '20 Digital signature. Small, slow, clean security assumption, no known attack avenues.

Thank you!