
Isogeny-based cryptography:
why, how, and the latest news

Chloe Martindale

University of Bristol

2nd June 2021



Isogeny-based cryptography: why?

I Based on hard problems believed to (still) be hard for
quantum computers

I Low memory requirements
I Lowest of all post-quantum candidates (by far)
I Smallest option similar size to classical ECC

I Made up of ECC subroutines quite compatible with
current small-device implementations

I Rich mathematical structure most flexible∗
post-quantum applications. Since 2018:

I Only pq non-interactive key exchange (c.f. Diffie-Hellman)
I Two different signature schemes
I Oblivious pseudorandom functions
I Threshold schemes
I ElGamal-style message encryption
I . . .
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Isogeny-based cryptography: why not?

I Newest of all pq schemes less confidence in security.
I Oldest practical idea “still standing” is from 2011.

I Rich mathematical structure many attack avenues,
maybe not all explored.

I Lowest memory, most flexible Hard Problem admits a
subexponential quantum attack, the complexity of which is
still an active research topic.

I Difficult to make concrete parameter choices.
I Slow: Fastest key encapsulation is ≈ ×25 slower than ECC

or the fastest pq option (lattices).
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Isogeny-based cryptography: how?

I Hard Problems in isogeny-based cryptography are
(mostly) based on elliptic curves.

I On a high level, this can be abstracted away. . .

3 / 20



Graph walking Diffie–Hellman?

Problem:
It is trivial to find paths (subtract coordinates).

What to do?
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Big picture

I Isogenies are a source of exponentially-sized graphs.

I We can walk efficiently on these graphs.

I Fast mixing: short paths to (almost) all nodes.

I No known efficient algorithms to recover paths
from endpoints.

I Enough structure to navigate the graph meaningfully.
That is: some well-behaved ‘directions’ to describe paths. More later.

It is easy to construct graphs that satisfy almost all of these —
not enough for crypto!
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Ex: CSIDH (Castryck-Lange-M.-Panny-Renes ’18)

Traditionally, Diffie-Hellman works in a group G via the map

Z× G → G
(x, g) 7→ gx.

Shor’s algorithm quantumly computes x from gx in any group
in polynomial time.

 Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:

H × S→ S.
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Square-and-multiply

Suppose G ∼= Z/23 and that Alice computes g13.
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Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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CSIDH: Nodes are now elliptic curves and edges are isogenies.
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Graphs of elliptic curves

Nodes: Supersingular curves EA : y2 = x3 + Ax2 + x over F419.
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

I We want to replace the exponentiation map

Z× G → G
(x, g) 7→ gx

by a group action on a set.

I Replace G by the set S of supersingular elliptic curves
EA : y2 = x3 + Ax2 + x over F419.

I Replace Z by a commutative group H.
I The action of a well-chosen l ∈ H on S moves the elliptic

curves one step around one of the cycles.

H × S → S
(l,E) 7→ l ∗ E.
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Graphs of elliptic curves

A 3-isogeny
(picture not to scale)

E51: y2=x3+51x2+x E9: y2=x3+9x2+x

(x, y)
(

97x3−183x2+x
x2−183x+97 ,

y· 133x3+154x2−5x+97
−x3+65x2+128x−133

)
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Diffie and Hellman go to the CSIDH

Alice Bob
[l3, l7

−1, l3, l5
−1] [l5, l7, l3

−1, l5]
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Ex: CSI-FiSh (S ‘06, D-G ‘18, Beullens-Kleinjung-Vercauteren ‘19)
Identification scheme from H × S→ S:

Prover Public Verifier
E ∈ S, li ∈ H

si ← $Z

sk =
∏

li
si ,

pk = sk ∗ E
pk // pk

c← $ {0, 1}c
ppti ← $Z

esk =
∏

li
ti ,

epk1 = esk ∗ E,

epk2 = esk · sk−c pk,epk1,epk2

.. check:

epk1 = epk2 ∗ ([skc] ∗ E).

After k challenges c, an imposter succeeds with prob 2−k.
14 / 20



Ex: SQISign (De Feo-Kohel-Leroux-Petit-Wesolowski ‘20)

Hard Problem in CSIDH, CSI-FiSh, etc:
Given elliptic curves E and E′ ∈ S, find a ∈ H such that

a ∗ E = E′.

SQISign is a newer signature scheme based on this idea:

E Eepk

Epk Ever

public, secret, ephemeral secret, public challenge, public proof
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Ex: SIDH (De Feo-Plut-Jao ‘11) / SIKE (NIST Round 3 alternate)
Main idea: Graph-walking Diffie-Hellman on this graph:

I Vertices: isomorphism classes of elliptic curves.
I Edges: 2- and 3-isogenies of elliptic curves (up to ∼=).

2 and 3-isogenies of elliptic curves over F4312
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A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in CSIDH, CSI-FiSh, SQISign etc:
Given elliptic curves E and E′ ∈ S,

find an isogeny E→ E′.

I ‘16 Active attack on SIDH (Galbrait-Petit-Shani-Ti)

I ‘17 Poly-time attack on overstretched parameters (Petit)

I ‘21 Poly-time attack on SIDH group key exchange (Us)

I ‘21 Poly-time attack on SIDH-based OPRF
(Basso-Kutas-Merz-Petit-Sanso)
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A new result (De Quehen-Kutas-Leonardi-M.-Panny-Petit-Stange)

Hard Problem in SIDH/SIKE:
Given elliptic curves E and E′ ∈ S,

and given some info about an isogeny E→ E′,
find an isogeny E→ E′.

Parameters:
I Let Alice and Bob’s path lengths be A and B.
I In SIKE: A ≈ B ≈ 1

2 log(p).

Results:
I Petit ‘17: poly-time attack when B > 4A > log(p).
I New attack:

I Poly-time when B > log(p) + A or B > 1
2 log(p) + 2A.

I Improves on best known attack when B > 1
2 log(p).

I Backdoor primes and starting curves.
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Summary and overview

I SIKE ‘11 KEM. Best-studied, in NIST, fast, small-ish,
torsion-point attacks most likely attack avenue.

I CSIDH ‘18 Key exchange. Small, many applications (c.f.
group actions), fast-ish, known quantum attack needs
further study, other attack avenues non-obvious.

I CSI-FiSh ‘19 Digital signature. Small-ish, flexible, fast-ish,
known quantum attack needs further study.

I SQISign ‘20 Digital signature. Small, slow, clean security
assumption, no known attack avenues.
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Thank you!
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