Cryptographic applications of isogeny graphs of genus 2 and 3 curves

Chloe Martindale
www.martindale.info

Eindhoven University of Technology

Raising the dimension: abelian varieties

- Elliptic curves are one-dimensional principally polarised ${ }^{1}$ abelian varieties with a point (given by the group identity).

[^0]
Raising the dimension: abelian varieties

- Elliptic curves are one-dimensional principally polarised ${ }^{1}$ abelian varieties with a point (given by the group identity).
- To any algebraic curve C we can associate an principally polarised abelian variety called the Jacobian $\operatorname{Jac}(C)$ of C.

[^1]
Raising the dimension: abelian varieties

- Elliptic curves are one-dimensional principally polarised ${ }^{1}$ abelian varieties with a point (given by the group identity).
- To any algebraic curve C we can associate an principally polarised abelian variety called the $\operatorname{Jacobian} \operatorname{Jac}(C)$ of C.
- There exists a group law on an abelian variety. \rightsquigarrow can study DLPs ${ }^{2}$ on the group of points.

[^2]
Raising the dimension: abelian varieties

- Elliptic curves are one-dimensional principally polarised ${ }^{1}$ abelian varieties with a point (given by the group identity).
- To any algebraic curve C we can associate an principally polarised abelian variety called the $\operatorname{Jacobian} \operatorname{Jac}(C)$ of C.
- There exists a group law on an abelian variety. \rightsquigarrow can study DLPs ${ }^{2}$ on the group of points.
- Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves.

[^3]
Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves Jac(C).

Dimension one

$$
C / k: y^{2}=f(x)
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=3$.

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves $\operatorname{Jac}(C)$.

Dimension one (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x)
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=3$.

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves $\operatorname{Jac}(C)$.

Dimension two (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x),
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=5$ or 6 .

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves $\operatorname{Jac}(C)$.

Dimension three (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x)
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=7$ or 8 .

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves Jac(C).

Dimension three (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x)
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=7$ or 8 .

OR

$$
C / k: f(x, y)=0
$$

where $f(x, y) \in k[x, y]$ and $\operatorname{deg}(f)=4$.

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves Jac(C).

Dimension three (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x), \quad \text { 'hyperelliptic' }
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=7$ or 8 .
OR

$$
C / k: f(x, y)=0
$$

where $f(x, y) \in k[x, y]$ and $\operatorname{deg}(f)=4$.

Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are all given by Jacobians of curves Jac(C).

Dimension three (if char $(k) \neq 2$):

$$
C / k: y^{2}=f(x), \quad \text { 'hyperelliptic' }
$$

where $f(x) \in k[x]$ and $\operatorname{deg}(f)=7$ or 8 .
OR

$$
C / k: f(x, y)=0
$$

'plane quartic'
where $f(x, y) \in k[x, y]$ and $\operatorname{deg}(f)=4$.

Example: group law in dimension 2

We define a group law on Jacobians of genus 2 curves with pairs of points on the curves.

Example: group law in dimension 2

First we define the inverse of $\{A, B\}$:

Example: group law in dimension 2

First we define the inverse of $\{A, B\}:-\{A, B\}=\{-A,-B\}$

Example: group law in dimension 2

Suppose we have another pair of points $\{C, D\}$:

Example: group law in dimension 2

Draw the unique cubic passing through A, B, C, D :

Example: group law in dimension 2

We define $\{A, B\}+\{C, D\}+\{E, F\}=0$.

Raising the dimension: isogenies

Recall:
Definition
E / k and E^{\prime} / k elliptic curves. An isogeny

$$
f: E \rightarrow E^{\prime}
$$

is a surjective morphism with finite kernel that sends the identity to the identity.

Raising the dimension: isogenies

Definition
A / k and A^{\prime} / k abelian varieties. An isogeny

$$
f: A \rightarrow A^{\prime}
$$

is a surjective morphism with finite kernel that sends the identity to the identity.

Raising the dimension: isogenies

Recall:

Definition

$f: E \rightarrow E^{\prime}$ an isogeny of elliptic curves $/ k$.
This induces an injective morphism of function fields

$$
\bar{k}\left(E^{\prime}\right) \rightarrow \bar{k}(E) .
$$

The degree of f is

$$
\operatorname{deg}(f)=\left[\bar{k}(E): \bar{k}\left(E^{\prime}\right)\right] .
$$

If f is separable then

$$
\operatorname{deg}(f)=\# \operatorname{ker}(f) .
$$

If $\operatorname{deg}(f)=\ell$, we call f an ℓ-isogeny.

Raising the dimension: isogenies

Definition

$f: A \rightarrow A^{\prime}$ an isogeny of abelian varieties $/ k$.
This induces an injective morphism of function fields

$$
\bar{k}\left(A^{\prime}\right) \rightarrow \bar{k}(A)
$$

The degree of f is

$$
\operatorname{deg}(f)=\left[\bar{k}(A): \bar{k}\left(A^{\prime}\right)\right] .
$$

If f is separable then

$$
\operatorname{deg}(f)=\# \operatorname{ker}(f)
$$

If $\operatorname{deg}(f)=\ell$, we almost call f an ℓ-isogeny. (Need more. . .)

Raising the dimension: isogenies

Recall:
An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] . .^{\dagger}
$$

${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising the dimension: isogenies

An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] . \dagger
$$

We are using: for any elliptic curve E, there is an isomorphism $E \cong E^{\vee}$ to its dual.
${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising the dimension: isogenies

An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] . \dagger
$$

We are using: for any elliptic curve E, there is an isomorphism $E \cong E^{\vee}$ to its dual.

This isomorphism comes from a principal polarisation.
${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising the dimension: isogenies

An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] . .^{\dagger}
$$

We are using: for any elliptic curve E, there is an isomorphism $E \cong E^{\vee}$ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then
${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising the dimension: isogenies

An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] . .^{\dagger}
$$

We are using: for any elliptic curve E, there is an isomorphism $E \cong E^{\vee}$ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

- A can be embedded in projective space so has equations.
${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising the dimension: isogenies

An ℓ-isogeny $f: E \rightarrow E^{\prime}$ has a dual ℓ-isogeny $f^{\vee}: E^{\prime} \rightarrow E$ such that

$$
f \circ f^{\vee}=f^{\vee} \circ f=[\ell] .{ }^{\dagger}
$$

We are using: for any elliptic curve E, there is an isomorphism $E \cong E^{\vee}$ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

- A can be embedded in projective space so has equations.
- The polarisation defines an isomorphism $A \cong A^{\vee}$ from A to the dual A^{\vee} of A.
(and much more stuff, out of the scope of this talk).
${ }^{\dagger}[\ell]: P \rightarrow \ell P$ is just multiplication by ℓ

Raising dimensions: isogenies

Recall:

Definition

$f: E \rightarrow E^{\prime}$ an isogeny of elliptic curves $/ \mathbb{F}_{q}$.
Let ℓ be a prime $\neq p(q$ is a power of $p)$.
If $\# \operatorname{ker}(f)=\ell$, we call f an ℓ-isogeny.
If f an ℓ-isogeny, then $f^{\vee} \circ f=[\ell]$.

Raising dimensions: isogenies

Definition

$f: E \rightarrow E^{\prime}$ an isogeny of elliptic curves $/ \mathbb{F}_{q}$.
Let ℓ be a prime $\neq p$ (q is a power of p).
If $\operatorname{ker}(f) \cong \mathbb{Z} / \ell \mathbb{Z}$, we call f an ℓ-isogeny.
If f an ℓ-isogeny, then $f^{\vee} \circ f=[\ell]$.

Raising dimensions: isogenies

Definition

$f: A \rightarrow A^{\prime}$ an isogeny of d-dimensional abelian varieties $/ \mathbb{F}_{q}$.
Let ℓ be a prime $\neq p$ (q is a power of p).
If $\operatorname{ker}(f) \cong \underbrace{\mathbb{Z} / \ell \mathbb{Z} \times \cdots \times \mathbb{Z} / \ell \mathbb{Z}}_{d \text { times }}$ and f^{\vee} of $=[\ell]$ (up to polarisation-
isomorphisms) we call f an $(\underbrace{\ell, \ldots, \ell) \text {-isogeny. }}_{d \text { times }}$

Raising dimensions: isogenies

Definition

$f: A \rightarrow A^{\prime}$ an isogeny of d-dimensional abelian varieties $/ \mathbb{F}_{q}$. Let ℓ be a prime $\neq p$ (q is a power of p).

```
If \(\operatorname{ker}(f) \cong \underbrace{\mathbb{Z} / \ell \mathbb{Z} \times \cdots \times \mathbb{Z} / \ell \mathbb{Z}}\) and \(f^{\vee}\) of \(=[\ell]\) (up to polarisation-
    \(d\) times
isomorphisms) we call \(f\) an \((\underbrace{\ell, \ldots, \ell) \text {-isogeny. }}_{d \text { times }}\)
```

Natural question: Are there any isogenies of degree ℓ when $d>1$?
(Isogenies with cyclic kernel are important in cryptographic algorithms).

Raising dimensions: cyclic isogenies

Question: Are there prime degree isogenies of higher dimensional principally polarised abelian varieties?

Raising dimensions: cyclic isogenies

Question: Are there prime degree isogenies of higher dimensional principally polarised abelian varieties?

Answer: Yes.

Raising dimensions: cyclic isogenies

Recall:

Definition

E / k an elliptic curve. An endomorphism of E is a morphism $E \rightarrow E$.

Example

- For $n \in \mathbb{Z}$, the multiplication-by- n map $[n]: P \rightarrow n P$.
- If $k=\mathbb{F}_{q}$, the q-power Frobenius map $\mathrm{Frob}_{q}:(x, y) \rightarrow\left(x^{q}, y^{q}\right)$.
\rightsquigarrow if $k=\mathbb{F}_{q}$, then $\mathbb{Z}\left[\operatorname{Frob}_{q}\right] \subseteq \operatorname{End}(E)$, the endomorphism ring of E.

Raising dimensions: cyclic isogenies

Definition
A / k an abelian variety. An endomorphism of A is a morphism
$A \rightarrow A$.
Example

- For $n \in \mathbb{Z}$, the multiplication-by- n map $[n]: P \rightarrow n P$.
- If $k=\mathbb{F}_{q}$, the q-power Frobenius map Frob $_{q}:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{q}, \ldots, x_{n}^{q}\right)$
\rightsquigarrow if $k=\mathbb{F}_{q}$, then $\mathbb{Z}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right] \subseteq \operatorname{End}(A)$, the endomorphism ring of A.

Raising dimensions: cyclic isogenies

Definition
A / k an abelian variety. An endomorphism of A is a morphism
$A \rightarrow A$.
Example

- For $n \in \mathbb{Z}$, the multiplication-by- n map $[n]: P \rightarrow n P$.
- If $k=\mathbb{F}_{q}$, the q-power Frobenius map

$$
\operatorname{Frob}_{q}:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{q}, \ldots, x_{n}^{q}\right)
$$

\rightsquigarrow if $k=\mathbb{F}_{q}$, then $\mathbb{Z}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right] \subseteq \operatorname{End}(A)$, the endomorphism ring of A.
Example
Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian $\operatorname{Jac}(C)$ of C is a two-dimensional principally polarised abelian variety

Raising dimensions: cyclic isogenies

Definition
A / k an abelian variety. An endomorphism of A is a morphism
$A \rightarrow A$.
Example

- For $n \in \mathbb{Z}$, the multiplication-by- n map $[n]: P \rightarrow n P$.
- If $k=\mathbb{F}_{q}$, the q-power Frobenius map $\mathrm{Frob}_{q}:\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(x_{1}^{q}, \ldots, x_{n}^{q}\right)$
\rightsquigarrow if $k=\mathbb{F}_{q}$, then $\mathbb{Z}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right] \subseteq \operatorname{End}(A)$, the endomorphism ring of A.
Example
Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian $\operatorname{Jac}(C)$ of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\operatorname{Frob}_{17}\right)$.

Raising dimensions: cyclic isogenies

Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian $\operatorname{Jac}(C)$ of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\operatorname{Frob}_{17}\right)$.

Raising dimensions: cyclic isogenies

Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian $\operatorname{Jac}(C)$ of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\operatorname{Frob}_{17}\right)$.

The characteristic polynomial of Frob_{17} is

$$
\chi(t)=t^{4}+3 t^{3}+25 t^{2}+51 t+289
$$

Raising dimensions: cyclic isogenies

Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian Jac (C) of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\operatorname{Frob}_{17}\right)$.

The characteristic polynomial of Frob_{17} is

$$
\chi(t)=t^{4}+3 t^{3}+25 t^{2}+51 t+289
$$

SO

$$
\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}[t] / \chi(t)
$$

is a degree four number field K.

Raising dimensions: cyclic isogenies

Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian Jac (C) of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\right.$ Frob $\left._{17}\right)$.

The characteristic polynomial of Frob_{17} is

$$
\chi(t)=t^{4}+3 t^{3}+25 t^{2}+51 t+289
$$

SO

$$
\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}[t] / \chi(t)
$$

is a degree four number field K.
This has a real quadratic subfield $K_{0}=\mathbb{Q}(\sqrt{5})$.

Raising dimensions: cyclic isogenies

Let $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. Then the Jacobian Jac (C) of C is a two-dimensional principally polarised abelian variety with endomorphism algebra $\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}\left(\right.$ Frob $\left._{17}\right)$.

The characteristic polynomial of Frob_{17} is

$$
\chi(t)=t^{4}+3 t^{3}+25 t^{2}+51 t+289
$$

SO

$$
\operatorname{End}(\operatorname{Jac}(C)) \otimes \mathbb{Q}=\mathbb{Q}[t] / \chi(t)
$$

is a degree four number field K.
This has a real quadratic subfield $K_{0}=\mathbb{Q}(\sqrt{5})$.
Our example has an endomorphism of norm 5^{2} :

$$
\mu=\frac{5+\sqrt{5}}{2}
$$

Raising dimensions: cyclic isogenies

$$
\begin{aligned}
& \text { Example: The Jacobian } \operatorname{Jac}(C) \text { of } C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1 \text {. } \\
& \mu=\frac{5+\sqrt{5}}{2} \in \operatorname{End}(\operatorname{Jac}(C)) \text {. }
\end{aligned}
$$

Raising dimensions: cyclic isogenies

Example: The Jacobian $\operatorname{Jac}(C)$ of $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. $\mu=\frac{5+\sqrt{5}}{2} \in \operatorname{End}(\operatorname{Jac}(C))$.

- The kernel of a $(5,5)$-isogeny from $\operatorname{Jac}(C)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ and is generated by

$$
P \in \operatorname{Jac}(C)[5] \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

Raising dimensions: cyclic isogenies

Example: The Jacobian $\operatorname{Jac}(C)$ of $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. $\mu=\frac{5+\sqrt{5}}{2} \in \operatorname{End}(\operatorname{Jac}(C))$.

- The kernel of a $(5,5)$-isogeny from $\operatorname{Jac}(C)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ and is generated by

$$
P \in \operatorname{Jac}(C)[5] \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

- The kernel of a cyclic μ-isogeny f from $\operatorname{Jac}(C)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$ (hence is cyclic!) and is generated by

$$
P \in \operatorname{Jac}(C)[\mu] \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

- This isogeny satisfies $f^{\vee} \circ f=[\mu]$ (up to polarisation-isomorphisms).

Raising dimensions: cyclic isogenies

Example: The Jacobian $\operatorname{Jac}(C)$ of $C / \mathbb{F}_{17}: y^{2}=x^{6}+2 x+1$. $\mu=\frac{5+\sqrt{5}}{2} \in \operatorname{End}(\operatorname{Jac}(C))$.

- The kernel of a $(5,5)$-isogeny from $\operatorname{Jac}(C)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}$ and is generated by

$$
P \in \operatorname{Jac}(C)[5] \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

- The kernel of a cyclic μ-isogeny f from $\operatorname{Jac}(C)$ is isomorphic to $\mathbb{Z} / 5 \mathbb{Z}$ (hence is cyclic!) and is generated by

$$
P \in \operatorname{Jac}(C)[\mu] \cong \mathbb{Z} / 5 \mathbb{Z} \times \mathbb{Z} / 5 \mathbb{Z}
$$

- This isogeny satisfies $f^{\vee} \circ f=[\mu]$ (up to polarisation-isomorphisms).

Do these isogenies always exist?

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K
(an imaginary quadratic extension of a totally real number field K_{0}).

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K
(an imaginary quadratic extension of a totally real number field K_{0}).
- Write $\mathcal{O}_{K_{0}}$ for the ring of integers of K_{0}. If:

1. $\mu \in \mathcal{O}_{K_{0}}$ is a prime element and is totally positive (all embeddings are positive), $\operatorname{Norm}_{K_{0} / \mathbb{Q}}(\mu)=\ell$, and

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K
(an imaginary quadratic extension of a totally real number field K_{0}).
- Write $\mathcal{O}_{K_{0}}$ for the ring of integers of K_{0}. If:

1. $\mu \in \mathcal{O}_{K_{0}}$ is a prime element and is totally positive (all embeddings are positive), $\operatorname{Norm}_{K_{0} / \mathbb{Q}}(\mu)=\ell$, and
2. $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}(A)$,

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K
(an imaginary quadratic extension of a totally real number field K_{0}).
- Write $\mathcal{O}_{K_{0}}$ for the ring of integers of K_{0}. If:

1. $\mu \in \mathcal{O}_{K_{0}}$ is a prime element and is totally positive (all embeddings are positive), $\operatorname{Norm}_{K_{0} / \mathbb{Q}}(\mu)=\ell$, and
2. $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}(A)$,
then $P \in A[\mu]$ of order ℓ will generate the kernel of a degree- ℓ cyclic isogeny f that satisfies $f^{\vee} \circ f=[\mu]$ (up to polarisation-isomorphisms).

Raising dimensions: cyclic isogenies

- Let A / \mathbb{F}_{q} be a d-dimensional principally polarised abelian variety for which $\operatorname{End}(A) \otimes \mathbb{Q}=\mathbb{Q}\left(\mathrm{Frob}_{q}\right)$ and is a degree 2d CM-field K
(an imaginary quadratic extension of a totally real number field K_{0}).
- Write $\mathcal{O}_{K_{0}}$ for the ring of integers of K_{0}. If:

1. $\mu \in \mathcal{O}_{K_{0}}$ is a prime element and is totally positive (all embeddings are positive), $\operatorname{Norm}_{K_{0} / \mathbb{Q}}(\mu)=\ell$, and
2. $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}(A)$,
then $P \in A[\mu]$ of order ℓ will generate the kernel of a degree- ℓ cyclic isogeny f that satisfies $f^{\vee} \circ f=[\mu]$ (up to polarisation-isomorphisms).

Open(?) question: what conditions on A / \mathbb{F}_{q} are necessary for cyclic isogenies to exist?

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

1. $d=2: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=5,6$.

2. $d=3: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=7,8$, or
- $C: f(x, y)=0$ is plane quartic, $\operatorname{deg}(f)=4$.
- There are two types of polarisation-preserving isogeny (ℓ prime):

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

1. $d=2: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=5,6$.

2. $d=3: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=7,8$, or
- $C: f(x, y)=0$ is plane quartic, $\operatorname{deg}(f)=4$.
- There are two types of polarisation-preserving isogeny (ℓ prime):

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

1. $d=2: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=5,6$.

2. $d=3: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=7,8$, or
- $C: f(x, y)=0$ is plane quartic, $\operatorname{deg}(f)=4$.
- There are two types of polarisation-preserving isogeny (ℓ prime):

1. $\underbrace{(\ell, \ldots, \ell)}_{d \text { times }}$-isogenies f.

- Degree: ℓ^{d}.
- Kernel generated by ℓ-torsion point.
- Satisfies $f^{\vee} \circ f=[\ell]$ up to polarisation-isomorphisms.

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

1. $d=2: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=5,6$.

2. $d=3: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=7,8$, or
- $C: f(x, y)=0$ is plane quartic, $\operatorname{deg}(f)=4$.
- There are two types of polarisation-preserving isogeny (ℓ prime):

1. $\underbrace{(\ell, \ldots, \ell)}_{d \text { times }}$-isogenies f.

- Degree: ℓ^{d}.
- Kernel generated by ℓ-torsion point.
- Satisfies $f^{\vee} \circ f=[\ell]$ up to polarisation-isomorphisms.

2. Cyclic μ-isogenies $f ; \mu$ is an endomorphism of norm ℓ^{2} (and more).

Recap so far

- We focus on d-dimensional principally polarised abelian varieties A.

1. $d=2: A=\mathrm{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=5,6$.

2. $d=3: A=\operatorname{Jac}(C)$, where

- $C: y^{2}=f(x)$ is hyperelliptic, $\operatorname{deg}(f)=7,8$, or
- $C: f(x, y)=0$ is plane quartic, $\operatorname{deg}(f)=4$.
- There are two types of polarisation-preserving isogeny (ℓ prime):

- Degree: ℓ^{d}.
- Kernel generated by ℓ-torsion point.
- Satisfies $f^{\vee} \circ f=[\ell]$ up to polarisation-isomorphisms.

2. Cyclic μ-isogenies $f ; \mu$ is an endomorphism of norm ℓ^{2} (and more).

- Degree: ℓ.
- Kernel generated by μ-torsion point.
- Satisfies $f^{\vee} \circ f=[\mu]$ up to polarisation-isomorphisms.

Brief ${ }^{3}$ history of genus 2 and 3 curves in crypto

pre-2006 Pollard rho is best algorithm for attacking DLP on small dimensional A / \mathbb{F}_{p}, complexity $O\left(p^{d / 2}\right)$. Theoretical efficiency of crypto with n-bit security roughly the same for $d=1,2,3$.
2006 Diem [D06] publishes index-calculus method to solve DLP on plane quartic genus 3 curves $/ \mathbb{F}_{q}$, complexity $O(q)$.
2008 Smith [S08] finds method of efficiently constructing a (2,2,2)-isogeny to a plane quartic genus 3 curve from 18.57% of all hyperelliptic genus 3 curves $/ \mathbb{F}_{q}$.
(Thus solving DLP in time $O(q)$ on these curves).
2010 Joux and Vitse [JV10] compute efficient 'covering map' $E / \mathbb{F}_{q^{3}} \rightarrow \operatorname{Jac}(C) / \mathbb{F}_{q}$, where C is a plane quartic genus 3 curve (for some elliptic curves).
(Thus solving DLP in time $O(q)<O\left(q^{3 / 2}\right)$ on E).

Brief history of genus 2 and 3 curves in crypto (contd.)

2010 Bisson, Cosset, and Robert [BCR10] release MAGMA package 'AVIsogenies' for computing (ℓ, ℓ)-isogenies.
2017 Renes and Smith [RS17] show that genus 2 arithmetic is as fast as and less memory intensive than elliptic curve arithmetic (for the same security level).
2017 Dudeanu, Jetchev, Robert, and Vuille [DJRV17] publish article on efficient computation of cyclic isogenies (in the case we covered).
2018 Costello [C18] introduces new methods for efficient computation of (2,2)-isogenies.
2019 Flynn and Ti [FT19] introduce a genus-2 version of SIDH using (2, 2)- and (3, 3)-isogeny graphs.
2020? Applications of isogeny graphs of abelian varieties?

Raising dimensions: isogeny graphs

Luca showed some nice applications of isogeny graphs of elliptic curves.

Natural question 1: What is the structure of isogeny graphs of abelian varieties?

Natural question 2: Are there (different) cryptographic applications of isogeny graphs of abelian varieties?

Q1: Structure of isogeny graphs of abelian varieties?

Recall:
An ℓ-isogeny graph of elliptic curves $/ k$ has:

- Vertices: Elliptic curves E / k with the same number of rational points (up to isomorphism).
- Edges: An edge $E-E^{\prime}$ represents an ℓ-isogeny $E \rightarrow E^{\prime}$ and its dual (up to isomorphism).

Q1: Structure of isogeny graphs of abelian varieties?

An (ℓ, \ldots, ℓ)-isogeny (resp. cyclic μ-isogeny) graph of abelian varieties $/ k$ satisfying property P^{4} has:

- Vertices: Abelian varieties A / k satisying P with the same number of rational points (up to P-preserving-isomorphism).
- Edges: An edge $A-A^{\prime}$ represents an P-preserving (ℓ, \ldots, ℓ)-isogeny (resp. cyclic μ-isogeny) $A \rightarrow A^{\prime}$ and its dual (up to P-preserving-isomorphism).
${ }^{4}$ This property should include that abelian varieties are isomorphic to their duals

Q1: Structure of isogeny graphs of abelian varieties?

Recall:

Theorem ([K96])

Let E / \mathbb{F}_{q} be an ordinary elliptic curve such that $j(E) \neq 0,1728$, and let $\ell \in \mathbb{Z}$ be a prime. Then the connected component of the ℓ-isogeny graph containing E is a volcano.

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])

Let A / \mathbb{F}_{q} be a principally polarised abelian variety with $\operatorname{End}(A) \otimes \mathbb{Q}=K$ a CM-field with maximal totally real subfield K_{0} such that $j(E) \neq 0,1728$, and let $\ell \in \mathbb{Z}$ be a prime. Then the connected component of the ℓ-isogeny graph containing E is a volcano.

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])

Let A / \mathbb{F}_{q} be a principally polarised abelian variety with $\operatorname{End}(A) \otimes \mathbb{Q}=K$ a CM-field with maximal totally real subfield K_{0} such that the only roots of unity in K are ± 1, and let $\ell \in \mathbb{Z}$ be a prime. Then the connected component of the ℓ-isogeny graph containing E is a volcano.

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])

Let A / \mathbb{F}_{q} be a principally polarised abelian variety with $\operatorname{End}(A) \otimes \mathbb{Q}=K a C M$-field with maximal totally real subfield K_{0} such that the only roots of unity in K are ± 1, and let μ be a totally positive prime element in $\mathcal{O}_{K_{0}}$. Then the connected component of the ℓ-isogeny graph containing E is a volcano.

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])

Let A / \mathbb{F}_{q} be a principally polarised abelian variety with $\operatorname{End}(A) \otimes \mathbb{Q}=K$ a CM-field with maximal totally real subfield K_{0} such that the only roots of unity in K are ± 1, and let μ be a totally positive prime element in $\mathcal{O}_{K_{0}}$. If $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}(A)$, then the connected component of the cyclic μ-isogeny graph containing A is a volcano.

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([K96])
With notation as before, locally at ℓ, a vertex at depth d has endomorphism ring $\ell^{d} \mathcal{O}_{K}$.

depth $=0 \quad$ depth $=1 \quad$ depth $=2$

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])
With notation as before, locally at μ, a vertex at depth d has endomorphism ring $\mu^{d} \mathcal{O}_{K}$.

$$
\text { depth }=0 \quad \text { depth }=1 \quad \text { depth }=2
$$

Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])
With notation as before, locally at μ, a vertex at depth d has endomorphism ring $\mu^{d} \mathcal{O}_{K}$.
\rightsquigarrow As

$$
\mathbb{Z}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right] \subseteq \operatorname{End}(A) \subseteq \mathcal{O}_{K}
$$

if

$$
\ell \not \subset\left[\mathcal{O}_{K}: \mathbb{Z}\left[\mathrm{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right]\right]
$$

and $\mu \in \mathcal{O}_{K_{0}}$ a prime above ℓ, then the μ-isogeny graph containing A is a disjoint union of cycles.

Q2: Applications of these isogeny graphs?

Application 1: Random sampling on the Schreier graph (idea in this context due to [JW17]).

Q2: Applications of these isogeny graphs?

Application 1: Random sampling on the Schreier graph (idea in this context due to [JW17]).

Nodes: (A subset of all the) simple, ordinary, principally polarised abelian varieties with $\operatorname{End}(A) \otimes \mathbb{Q}=K$, as above.

Q2: Applications of these isogeny graphs?

Application 1: Random sampling on the Schreier graph (idea in this context due to [JW17]).

Nodes: (A subset of all the) simple, ordinary, principally polarised abelian varieties with $\operatorname{End}(A) \otimes \mathbb{Q}=K$, as above. Edges: cyclic $\mu_{1^{-}}, \mu_{2}-$, and μ_{3}-isogenies of norms ℓ_{1}, ℓ_{2}, and ℓ_{3} not dividing $\left[\mathcal{O}_{K}: \mathbb{Z}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right]\right]$.

Q2: Applications of these isogeny graphs?

Application 1: Random sampling on the Schreier graph (idea in this context due to [JW17]).

Nodes: (A subset of all the) simple, ordinary, principally polarised abelian varieties with $\operatorname{End}(A) \otimes \mathbb{Q}=K$, as above. Edges: cyclic $\mu_{1}-, \mu_{2^{-}}$, and μ_{3}-isogenies of norms ℓ_{1}, ℓ_{2}, and ℓ_{3} not dividing $\left[\mathcal{O}_{K}: \mathbb{Z}\left[\mathrm{Frob}_{q}, \overline{\mathrm{Frob}_{q}}\right]\right]$.
Main challenge: efficient computation of cyclic μ-isogenies (computing neighbours in graph).

Q2: Applications of these graphs?

Idea: use random sampling to get a probabilistic algorithm to compute an isogeny from any hyperelliptic genus 3 curve to a plane quartic genus 3 curve (where DLP is weaker). ${ }^{a}$
${ }^{a}$ Idea due to [BJW17]. Solution and most of the rest of this talk is ongoing work with Jetchev-Martindale-Milio-Vuille-Wesolowski

This can only work if a 'random' three-dimensional principally polarised abelian variety is plane quartic.

Q2: Applications of these graphs?

Idea: use random sampling to get a probabilistic algorithm to compute an isogeny from any hyperelliptic genus 3 curve to a plane quartic genus 3 curve (where DLP is weaker). ${ }^{a}$
${ }^{a}$ Idea due to [BJW17]. Solution and most of the rest of this talk is ongoing work with Jetchev-Martindale-Milio-Vuille-Wesolowski

This can only work if a 'random' three-dimensional principally polarised abelian variety is plane quartic.
What does this mean?

Q2: Applications of these graphs?

Definition

We define an isogeny graph G of principally polarised abelian varieties of dimension 3 over \mathbb{F}_{q} to be good if there exists a constant $0<c<1$ such that

$$
\#\{\text { non-hyp vertices }\} \geq c \#\{\text { hyperelliptic vertices }\},
$$ and the non-hyperelliptic vertices are 'sufficiently randomly distributed' in each of the connected components of G.

Q2: Applications of these graphs?

Definition

We define an isogeny graph G of principally polarised abelian varieties of dimension 3 over \mathbb{F}_{q} to be good if there exists a constant $0<c<1$ such that

$$
\#\{\text { non-hyp vertices }\} \geq c \#\{\text { hyperelliptic vertices }\},
$$

and the non-hyperelliptic vertices are 'sufficiently randomly distributed' in each of the connected components of G.

Heuristic H: there exists a constant $c>0$, independent of q, such that a randomly chosen ordinary isogeny class ${ }^{\dagger}$ over \mathbb{F}_{q} is good with probability 1.

[^4]
Q2: Applications of these graphs?

Application 2: Assuming Heuristic H, use random sampling to get a probabilistic algorithm to compute an isogeny from any hyperelliptic genus 3 curve to a plane quartic genus 3 curve (where DLP is weaker).

Problem: nodes in this Schreier graph are very special- what happens when $\mathcal{O}_{K_{0}} \nsubseteq \operatorname{End}(A)$ (not even locally)?

Q2: Applications of these graphs?

Application 2: Assuming Heuristic H, use random sampling to get a probabilistic algorithm to compute an isogeny from any hyperelliptic genus 3 curve to a plane quartic genus 3 curve (where DLP is weaker).

Problem: nodes in this Schreier graph are very special- what happens when $\mathcal{O}_{K_{0}} \nsubseteq \operatorname{End}(A)$ (not even locally)?

- There are no cyclic polarisation-preserving degree- ℓ isogenies from A.
- But there could be (ℓ, \ldots, ℓ)-isogenies.
\rightsquigarrow Also need to look at the (ℓ, \ldots, ℓ)-isogeny graph.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$\operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :

$$
\operatorname{End}^{\mathbb{R}}(A) \text { is the real part of } \operatorname{End}(A)
$$

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$\operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$\operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Isogenies within layers
are 'RM-horizontal'

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$\operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$\operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$E \operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (ℓ, \ldots, ℓ)-isogeny graph of a simple and ordinary principally polarised abelian variety over \mathbb{F}_{q} :
$E \operatorname{End}^{\mathbb{R}}(A)$ is the real part of $\operatorname{End}(A)$.

Q2: Applications of these graphs?

Reminder-Application 2: under Heuristic H, construct an isogeny from (almost) any hyperelliptic genus 3 Jacobian $\operatorname{Jac}(C) / \mathbb{F}_{q}$ to a plane quartic genus $3 \operatorname{Jacobian} \operatorname{Jac}\left(C^{\prime}\right) / \mathbb{F}_{q}$, thus attacking DLP on Jac (C) in time $O(q)$ (next-best-option Pollardrho is $O\left(q^{3 / 2}\right)$). ${ }^{a}$
${ }^{a}$ Disclaimer: given a sufficiently efficient method of computing isogenies.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

- Locally at $\ell_{1}, \mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{0}\right)$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Ascend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- Locally at $\ell_{1}, \mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{0}\right)$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Ascend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- Locally at $\ell_{1}, \mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{0}\right)$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

Example

- Suppose $\left[\mathcal{O}_{K_{0}}: \mathbb{Z}\left[\mathrm{Frob}_{q}+\overline{\mathrm{Frob}_{q}}\right]\right]=\ell_{1}^{4} \ell_{2}$.
- Ascend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Ascend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- Locally at $\ell_{1}, \mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{0}\right)$.
- $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{1}\right)$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{1}\right)$.
- Suppose $\left[\mathcal{O}_{K}: \mathcal{O}_{K_{0}}\left[\mathrm{Frob}_{q}, \overline{\mathrm{Frob}_{q}}\right]\right]=1$. Then do not need to ascend any cyclic-isogeny graphs as $\operatorname{End}\left(A^{\prime}\right)=\mathcal{O}_{K}$.

Constructing an isogeny from a hyperelliptic to a

 plane quartic (simplified)- $\mathcal{O}_{K_{0}} \subseteq \operatorname{End}\left(A_{1}\right)$.
- Suppose $\left[\mathcal{O}_{K}: \mathcal{O}_{K_{0}}\left[\operatorname{Frob}_{q}, \overline{\operatorname{Frob}_{q}}\right]\right]=1$. Then do not need to ascend any cyclic-isogeny graphs as $\operatorname{End}\left(A^{\prime}\right)=\mathcal{O}_{K}$.
- Do a random walk on the union of several cyclic- μ-isogeny graphs. (With our conditions, these graphs are disjoint unions of cycles).

- The resulting abelian variety A_{2} is uniformly random within the top layer of all (ℓ, ℓ, ℓ)-isogeny graphs.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- A_{2}

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.

- A_{3}
- Locally at $\ell_{1}, \operatorname{End}^{\mathbb{R}}\left(A_{3}\right)=\mathbb{Z}\left[\operatorname{Frob}_{q}+\overline{\operatorname{Frob}_{q}}\right]$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Descend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- Locally at $\ell_{1}, \operatorname{End}^{\mathbb{R}}\left(A_{3}\right)=\mathbb{Z}\left[\operatorname{Frob}_{q}+\overline{\operatorname{Frob}_{q}}\right]$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Descend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- Locally at $\ell_{1}, \operatorname{End}^{\mathbb{R}}\left(A_{3}\right)=\mathbb{Z}\left[\operatorname{Frob}_{q}+\overline{\operatorname{Frob}_{q}}\right]$.

Constructing an isogeny from a hyperelliptic to a plane quartic (simplified)

- A_{2} is uniformly random within the top layer of sufficiently many (ℓ, ℓ, ℓ)-isogeny graphs.
- Vast majority of abelian varieties are in the bottom layer.
- Descend the $\left(\ell_{1}, \ell_{1}, \ell_{1}\right)$-isogeny graph.
- Descend the $\left(\ell_{2}, \ell_{2}, \ell_{2}\right)$-isogeny graph.

- A_{4}
- Locally at ℓ_{1}, End $^{\mathbb{R}}\left(A_{3}\right)=\mathbb{Z}\left[\operatorname{Frob}_{q}+\overline{\operatorname{Frob}_{q}}\right]$.
- A_{4} is a sufficiently random node; it is plane quartic with high probability.
(modulo many details.)

Known applications of isogeny graphs of abelian varieties

- We can use random sampling on isogeny graphs to attack DLP for a high percentage of hyperelliptic genus 3 curves under Heuristic H.

Known applications of isogeny graphs of abelian varieties

- We can use random sampling on isogeny graphs to attack DLP for a high percentage of hyperelliptic genus 3 curves under Heuristic H.
- Flynn and Ti [FT19] recently showed that an SIDH-style algorithm can theoretically be carried out with $(2,2)$ - and (3,3)-isogeny graphs of supersingular two-dimensional abelian varieties over \mathbb{F}_{q}.

Known applications of isogeny graphs of abelian varieties

- We can use random sampling on isogeny graphs to attack DLP for a high percentage of hyperelliptic genus 3 curves under Heuristic H.
- Flynn and Ti [FT19] recently showed that an SIDH-style algorithm can theoretically be carried out with $(2,2)$ - and (3,3)-isogeny graphs of supersingular two-dimensional abelian varieties over \mathbb{F}_{q}.

Both of these applications still need efficient implementations of isogenies of abelian varieties.

What don't we know?

- Efficient implementations of both cyclic isogenies and (ℓ, ℓ) or (ℓ, ℓ, ℓ)-isogenies are needed.

What don't we know?

- Efficient implementations of both cyclic isogenies and (ℓ, ℓ) or (ℓ, ℓ, ℓ)-isogenies are needed.
- Proof and/or more precise statement of Heuristic H is also needed.

What don't we know?

- Efficient implementations of both cyclic isogenies and (ℓ, ℓ) or (ℓ, ℓ, ℓ)-isogenies are needed.
- Proof and/or more precise statement of Heuristic H is also needed.
- Given that genus 2 arithmetic is less memory heavy and as efficient as elliptic curve arithmetic, computing isogenies may follow the same pattern?

What don't we know?

- Efficient implementations of both cyclic isogenies and (ℓ, ℓ) or (ℓ, ℓ, ℓ)-isogenies are needed.
- Proof and/or more precise statement of Heuristic H is also needed.
- Given that genus 2 arithmetic is less memory heavy and as efficient as elliptic curve arithmetic, computing isogenies may follow the same pattern?
- We only covered some cases of structure theorems for abelian varieties: much more to understand!

What don't we know?

- Efficient implementations of both cyclic isogenies and (ℓ, ℓ) or (ℓ, ℓ, ℓ)-isogenies are needed.
- Proof and/or more precise statement of Heuristic H is also needed.
- Given that genus 2 arithmetic is less memory heavy and as efficient as elliptic curve arithmetic, computing isogenies may follow the same pattern?
- We only covered some cases of structure theorems for abelian varieties: much more to understand!
- There are more options for creating useful graphs with more choices of abelian variety
\rightsquigarrow new (maybe post-quantum) applications?

Further reading

Background on (hyper)elliptic curves:

- Silverman, The Arithmetic of Elliptic Curves https://www.springer.com/gp/book/9780387094939
- Cassels and Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2
https://doi.org/10.1017/CB09780511526084
- Avanzi, Cohen, Doche, Frey, Lange, Nguyen, and Vercauteren, Handbook of Hyperelliptic Curve Cryptography https://www.hyperelliptic.org/HEHCC/
- Sutherland, Isogeny volcanoes https://arxiv.org/abs/1208.5370

Further reading

Mentioned in this presentation:

BCR10 Bisson, Cosset, and Robert, AVIsogenies (2010)
http://avisogenies.gforge.inria.fr/
BJW17 Brooks, Jetchev, and Wesolowski, Isogeny graphs of ordinary abelian varieties (2017)
https://arxiv.org/abs/1609.09793
C18 Costello, Computing supersingular isogenies on Kummer surfaces (2018) https://eprint.iacr.org/2018/850

D06 Diem, An Index Calculus Algorithm for Plane Curves of Small Degree (2006) https://link.springer.com/chapter/10.1007/11792086_38

DJRV17 Dudeanu, Jetchev, Robert, and Vuille, Cyclic Isogenies for Abelian Varieties with Real Multiplication (2017) https://arxiv.org/abs/1710.05147
FT19 Flynn and Ti, Genus Two Isogeny Cryptography (2019) https://eprint.iacr.org/2019/177

Further reading

Mentioned in this presentation (contd.):
JW17 Jetchev and Wesolowski, Horizontal isogeny graphs of ordinary abelian varieties and the discrete logarithm problem (2017)
https://arxiv.org/abs/1506.00522
JV10 Joux and Vitse, Cover and Decomposition Index Calculus on Elliptic Curves made practical (2010)
https://eprint.iacr.org/2011/020.pdf
K96 Kohel, Endomorphism rings of elliptic curves over finite fields (PhD thesis) (1996)
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf
M18 Martindale, Isogeny graphs, modular polynomials, and applications (PhD thesis) (2018)
http://www.martindale.info/research/Thesis.pdf
RS17 Renes and Smith, qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs (2017)
https://eprint.iacr.org/2017/518
S08 Smith, Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves (2008)
https://arxiv.org/abs/0806. 2995

[^0]: ${ }^{1}$ Read: has equations + more later.
 ${ }^{2}$ DLPs $=$ Discrete Logarithm Problems

[^1]: ${ }^{1}$ Read: has equations + more later.
 ${ }^{2}$ DLPs = Discrete Logarithm Problems

[^2]: ${ }^{1}$ Read: has equations + more later.
 ${ }^{2}$ DLPs = Discrete Logarithm Problems

[^3]: ${ }^{1}$ Read: has equations + more later.
 ${ }^{2}$ DLPs = Discrete Logarithm Problems

[^4]: ${ }^{\dagger}$ An ordinary isogeny class is a set of abelian varieties that are all isogenous and all ordinary (have full p-torsion). (They also all have the same CM-field as an endomorphism algebra - our K).

