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Raising the dimension: abelian varieties

I Elliptic curves are one-dimensional principally polarised1

abelian varieties with a point (given by the group identity).

I To any algebraic curve C we can associate an principally
polarised abelian variety called the Jacobian Jac(C) of C.

I There exists a group law on an abelian variety.
 can study DLPs2 on the group of points.

I Dimension 1, 2, and 3 principally polarised abelian
varieties are all given by Jacobians of curves.

1Read: has equations + more later.
2DLPs = Discrete Logarithm Problems
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Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are
all given by Jacobians of curves Jac(C).

Dimension one

(if char(k) 6= 2)

:

C/k : y2 = f (x),

‘hyperelliptic’

where f (x) ∈ k[x] and deg(f ) = 3.

OR

C/k : f (x, y) = 0,

‘plane quartic’

where f (x, y) ∈ k[x, y] and deg(f ) = 4.
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Raising the dimension: abelian varieties

Dimension 1, 2, and 3 principally polarised abelian varieties are
all given by Jacobians of curves Jac(C).

Dimension two (if char(k) 6= 2):

C/k : y2 = f (x),

‘hyperelliptic’

where f (x) ∈ k[x] and deg(f ) = 5 or 6.

OR

C/k : f (x, y) = 0,

‘plane quartic’

where f (x, y) ∈ k[x, y] and deg(f ) = 4.
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where f (x) ∈ k[x] and deg(f ) = 7 or 8.
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Example: group law in dimension 2
We define a group law on Jacobians of genus 2 curves with
pairs of points on the curves.
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Example: group law in dimension 2
First we define the inverse of {A,B}:
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Example: group law in dimension 2
First we define the inverse of {A,B}: −{A,B} = {−A,−B}
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Example: group law in dimension 2
Suppose we have another pair of points {C,D}:
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Example: group law in dimension 2
Draw the unique cubic passing through A,B,C,D:
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Example: group law in dimension 2
We define {A,B}+ {C,D}+ {E,F} = 0.
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Raising the dimension: isogenies

Recall:

Definition
E/k and E′/k elliptic curves. An isogeny

f : E→ E′

is a surjective morphism with finite kernel that sends the
identity to the identity.
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Raising the dimension: isogenies

Recall:

Definition
f : E→ E′ an isogeny of elliptic curves /k.
This induces an injective morphism of function fields

k(E′)→ k(E).

The degree of f is

deg(f ) = [k(E) : k(E′)].

If f is separable then

deg(f ) = # ker(f ).

If deg(f ) = `, we call f an `-isogeny.
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Raising the dimension: isogenies

Recall:

Definition
f : A→ A′ an isogeny of abelian varieties /k.
This induces an injective morphism of function fields

k(A′)→ k(A).

The degree of f is

deg(f ) = [k(A) : k(A′)].

If f is separable then

deg(f ) = # ker(f ).

If deg(f ) = `, we almost call f an `-isogeny. (Need more. . .)
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Raising the dimension: isogenies
Recall:
An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

I A can be embedded in projective space so has equations.
I The polarisation defines an isomorphism A ∼= A∨ from A

to the dual A∨ of A.
(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising the dimension: isogenies

Recall:

An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

I A can be embedded in projective space so has equations.
I The polarisation defines an isomorphism A ∼= A∨ from A

to the dual A∨ of A.
(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising the dimension: isogenies

Recall:

An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

I A can be embedded in projective space so has equations.
I The polarisation defines an isomorphism A ∼= A∨ from A

to the dual A∨ of A.
(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising the dimension: isogenies

Recall:

An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then

I A can be embedded in projective space so has equations.
I The polarisation defines an isomorphism A ∼= A∨ from A

to the dual A∨ of A.
(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising the dimension: isogenies

Recall:

An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then
I A can be embedded in projective space so has equations.

I The polarisation defines an isomorphism A ∼= A∨ from A
to the dual A∨ of A.

(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising the dimension: isogenies

Recall:

An `-isogeny f : E→ E′ has a dual `-isogeny f∨ : E′ → E such
that

f ◦ f∨ = f∨ ◦ f = [`].†

We are using: for any elliptic curve E, there is an isomorphism
E ∼= E∨ to its dual.

This isomorphism comes from a principal polarisation.

If an abelian variety A is principally polarised, then
I A can be embedded in projective space so has equations.
I The polarisation defines an isomorphism A ∼= A∨ from A

to the dual A∨ of A.
(and much more stuff, out of the scope of this talk).

† [`] : P→ `P is just multiplication by `
12 / 39



Raising dimensions: isogenies

Recall:

Definition
f : E→ E′ an isogeny of elliptic curves /Fq.
Let ` be a prime 6= p (q is a power of p).

If #ker(f ) = `, we call f an `-isogeny.

If f an `-isogeny, then f∨ ◦ f = [`].

Natural question: Are there any isogenies of degree ` when
d > 1?
(Isogenies with cyclic kernel are important in cryptographic algorithms).
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Raising dimensions: isogenies

Recall:

Definition
f : A→ A′ an isogeny of d-dimensional abelian varieties /Fq.
Let ` be a prime 6= p (q is a power of p).

If ker(f ) ∼= Z/`Z× · · · × Z/`Z︸ ︷︷ ︸
d times

and f∨◦f = [`] (up to polarisation-

isomorphisms) we call f an (`, . . . , `)︸ ︷︷ ︸
d times

-isogeny.

Natural question: Are there any isogenies of degree ` when
d > 1?
(Isogenies with cyclic kernel are important in cryptographic algorithms).
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Raising dimensions: cyclic isogenies

Question: Are there prime degree isogenies of higher
dimensional principally polarised abelian varieties?

Answer: Yes.
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Raising dimensions: cyclic isogenies
Recall:

Definition
E/k an elliptic curve. An endomorphism of E is a morphism
E→ E.

Example

I For n ∈ Z, the multiplication-by-n map [n] : P→ nP.
I If k = Fq, the q-power Frobenius map

Frobq : (x, y)→ (xq, yq).

 if k = Fq, then Z[Frobq] ⊆ End(E), the endomorphism ring of
E.

Example
Let C/F17 : y2 = x6 + 2x + 1. Then the Jacobian Jac(C) of C is a
two-dimensional principally polarised abelian variety

with
endomorphism algebra End(Jac(C))⊗Q = Q(Frob17).

15 / 39
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Raising dimensions: cyclic isogenies

Let C/F17 : y2 = x6 + 2x + 1. Then the Jacobian Jac(C) of C is
a two-dimensional principally polarised abelian variety with
endomorphism algebra End(Jac(C))⊗Q = Q(Frob17).

The characteristic polynomial of Frob17 is

χ(t) = t4 + 3t3 + 25t2 + 51t + 289,

so
End(Jac(C))⊗Q = Q[t]/χ(t)

is a degree four number field K.
This has a real quadratic subfield K0 = Q(

√
5).

Our example has an endomorphism of norm 52:

µ =
5 +
√

5
2

.
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Raising dimensions: cyclic isogenies

Example: The Jacobian Jac(C) of C/F17 : y2 = x6 + 2x + 1.
µ = 5+

√
5

2 ∈ End(Jac(C)).

I The kernel of a (5, 5)-isogeny from Jac(C) is isomorphic to
Z/5Z× Z/5Z and is generated by

P ∈ Jac(C)[5] ∼= Z/5Z× Z/5Z× Z/5Z× Z/5Z.

I The kernel of a cyclic µ-isogeny f from Jac(C) is isomorphic
to Z/5Z (hence is cyclic!) and is generated by

P ∈ Jac(C)[µ] ∼= Z/5Z× Z/5Z.

I This isogeny satisfies f∨ ◦ f = [µ] (up to polarisation-isomorphisms).

Do these isogenies always exist?
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Raising dimensions: cyclic isogenies

I Let A/Fq be a d-dimensional principally polarised abelian
variety for which End(A)⊗Q = Q(Frobq) and is a degree
2d CM-field K

(an imaginary quadratic extension of a totally real number field K0).

I Write OK0 for the ring of integers of K0. If:
1. µ ∈ OK0 is a prime element and is totally positive (all

embeddings are positive), NormK0/Q(µ) = `, and

2. OK0 ⊆ End(A),

then P ∈ A[µ] of order ` will generate the kernel of a
degree-` cyclic isogeny f that satisfies f∨ ◦ f = [µ] (up to
polarisation-isomorphisms).

Open(?) question: what conditions on A/Fq are necessary for
cyclic isogenies to exist?

18 / 39
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Recap so far
I We focus on d-dimensional principally polarised abelian

varieties A.

1. d = 2: A = Jac(C), where
- C : y2 = f (x) is hyperelliptic, deg(f ) = 5, 6.

2. d = 3: A = Jac(C), where
- C : y2 = f (x) is hyperelliptic, deg(f ) = 7, 8, or
- C : f (x, y) = 0 is plane quartic, deg(f ) = 4.

I There are two types of polarisation-preserving isogeny
(` prime):

1. (`, . . . , `)︸ ︷︷ ︸
d times

-isogenies f .

- Degree: `d.
- Kernel generated by `-torsion point.
- Satisfies f∨ ◦ f = [`] up to polarisation-isomorphisms.

2. Cyclic µ-isogenies f ; µ is an endomorphism of norm `2

(and more).
- Degree: `.
- Kernel generated by µ-torsion point.
- Satisfies f∨ ◦ f = [µ] up to polarisation-isomorphisms.
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Brief3 history of genus 2 and 3 curves in crypto

pre-2006 Pollard rho is best algorithm for attacking DLP on small
dimensional A/Fp, complexity O(pd/2).
Theoretical efficiency of crypto with n-bit security roughly
the same for d = 1, 2, 3.

2006 Diem [D06] publishes index-calculus method to solve DLP
on plane quartic genus 3 curves /Fq, complexity O(q).

2008 Smith [S08] finds method of efficiently constructing a
(2, 2, 2)-isogeny to a plane quartic genus 3 curve from
18.57% of all hyperelliptic genus 3 curves /Fq.
(Thus solving DLP in time O(q) on these curves).

2010 Joux and Vitse [JV10] compute efficient ‘covering map’
E/Fq3 → Jac(C)/Fq, where C is a plane quartic genus 3
curve (for some elliptic curves).
(Thus solving DLP in time O(q) < O(q3/2) on E).

3Definitely not comprehensive
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Brief history of genus 2 and 3 curves in crypto (contd.)

2010 Bisson, Cosset, and Robert [BCR10] release MAGMA
package ‘AVIsogenies’ for computing (`, `)-isogenies.

2017 Renes and Smith [RS17] show that genus 2 arithmetic is as
fast as and less memory intensive than elliptic curve
arithmetic (for the same security level).

2017 Dudeanu, Jetchev, Robert, and Vuille [DJRV17] publish
article on efficient computation of cyclic isogenies (in the
case we covered).

2018 Costello [C18] introduces new methods for efficient
computation of (2, 2)-isogenies.

2019 Flynn and Ti [FT19] introduce a genus-2 version of SIDH
using (2, 2)- and (3, 3)-isogeny graphs.

2020? Applications of isogeny graphs of abelian varieties?
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Raising dimensions: isogeny graphs

Luca showed some nice applications of isogeny graphs of
elliptic curves.

Natural question 1: What is the structure of isogeny graphs of
abelian varieties?

Natural question 2: Are there (different) cryptographic appli-
cations of isogeny graphs of abelian varieties?
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Q1: Structure of isogeny graphs of abelian varieties?

Recall:
An `-isogeny graph of elliptic curves /k has:

I Vertices: Elliptic curves E/k with the same number of
rational points (up to isomorphism).

I Edges: An edge E− E′ represents an `-isogeny E→ E′ and
its dual (up to isomorphism).
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Q1: Structure of isogeny graphs of abelian varieties?

Recall:

An (`, . . . , `)-isogeny (resp. cyclic µ-isogeny) graph of abelian
varieties /k satisfying property P 4 has:

I Vertices: Abelian varieties A/k satisying P with the same
number of rational points (up to
P-preserving-isomorphism).

I Edges: An edge A− A′ represents an P-preserving
(`, . . . , `)-isogeny (resp. cyclic µ-isogeny) A→ A′ and its
dual (up to P-preserving-isomorphism).

4This property should include that abelian varieties are isomorphic to
their duals
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Q1: Structure of isogeny graphs of abelian varieties?

Recall:

Theorem ([K96])
Let E/Fq be an ordinary elliptic curve such that j(E) 6= 0, 1728, and
let ` ∈ Z be a prime. Then the connected component of the `-isogeny
graph containing E is a volcano.
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Theorem ([BJW17]/[M18])
Let A/Fq be a principally polarised abelian variety with
End(A)⊗Q = K a CM-field with maximal totally real subfield K0
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Recall:

Theorem ([BJW17]/[M18])
Let A/Fq be a principally polarised abelian variety with
End(A)⊗Q = K a CM-field with maximal totally real subfield K0
such that the only roots of unity in K are ±1, and let µ be a totally
positive prime element in OK0 . If OK0 ⊆ End(A), then the connected
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Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([K96])
With notation as before, locally at `, a vertex at depth d has
endomorphism ring `dOK.

depth = 0 depth = 1 depth = 2
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Q1: Structure of isogeny graphs of abelian varieties?

Theorem ([BJW17]/[M18])
With notation as before, locally at µ, a vertex at depth d has
endomorphism ring µdOK.

 As
Z[Frobq,Frobq] ⊆ End(A) ⊆ OK,

if
` 6 |

[
OK : Z[Frobq,Frobq]

]
and µ ∈ OK0 a prime above `, then the µ-isogeny graph con-
taining A is a disjoint union of cycles.

25 / 39



Q2: Applications of these isogeny graphs?

Application 1: Random sampling on the Schreier graph (idea
in this context due to [JW17]).

Nodes: (A subset of all the) simple, ordinary, principally
polarised abelian varieties with End(A)⊗Q = K, as above.
Edges: cyclic µ1-, µ2-, and µ3-isogenies of norms `1, `2, and `3

not dividing
[
OK : Z[Frobq,Frobq]

]
.

Main challenge: efficient computation of cyclic µ-isogenies
(computing neighbours in graph).
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Q2: Applications of these graphs?

Idea: use random sampling to get a probabilistic algorithm to
compute an isogeny from any hyperelliptic genus 3 curve to a
plane quartic genus 3 curve (where DLP is weaker). a

aIdea due to [BJW17]. Solution and most of the rest of this talk is ongoing
work with Jetchev-Martindale-Milio-Vuille-Wesolowski

This can only work if a ‘random’ three-dimensional principally
polarised abelian variety is plane quartic.

What does this mean?
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Q2: Applications of these graphs?
Definition
We define an isogeny graph G of principally polarised abelian
varieties of dimension 3 over Fq to be good if there exists a
constant 0 < c < 1 such that

#{non-hyp vertices} ≥ c#{hyperelliptic vertices},

and the non-hyperelliptic vertices are ‘sufficiently randomly
distributed’ in each of the connected components of G.

Heuristic H: there exists a constant c > 0, independent of q,
such that a randomly chosen ordinary isogeny class† over Fq is
good with probability 1.

† An ordinary isogeny class is a set of abelian varieties that are all isogenous and all

ordinary (have full p-torsion). (They also all have the same CM-field as an endomorphism

algebra - our K).
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Q2: Applications of these graphs?

Application 2: Assuming Heuristic H, use random sampling to
get a probabilistic algorithm to compute an isogeny from any
hyperelliptic genus 3 curve to a plane quartic genus 3 curve
(where DLP is weaker).

Problem: nodes in this Schreier graph are very special– what
happens when OK0 6⊆ End(A) (not even locally)?

I There are no cyclic polarisation-preserving degree-`
isogenies from A.

I But there could be (`, . . . , `)-isogenies.
 Also need to look at the (`, . . . , `)-isogeny graph.
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Q1: Structure of isogeny graphs of abelian varieties?

Connected component of (`, . . . , `)-isogeny graph of a simple
and ordinary principally polarised abelian variety over Fq:

EndR(A) is the real part of End(A).

OK0 ⊆ EndR(A)

`OK0 ⊆ EndR(A) 6⊆ OK0

Isogenies going up one layer
are ‘RM-ascending’

Isogenies going down one layer
are ‘RM-descending’

...

`nOK0 ⊆ EndR(A) 6⊆ `n−1OK0A A′
Isogenies within layers

are ‘RM-horizontal’
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Q2: Applications of these graphs?

Reminder–Application 2: under Heuristic H, construct an
isogeny from (almost) any hyperelliptic genus 3 Jacobian
Jac(C)/Fq to a plane quartic genus 3 Jacobian Jac(C′)/Fq, thus
attacking DLP on Jac(C) in time O(q) (next-best-option Pollard-
rho is O(q3/2)). a

aDisclaimer: given a sufficiently efficient method of computing isogenies.
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Constructing an isogeny from a hyperelliptic to a
plane quartic (simplified)

Example

I Suppose
[
OK0 : Z[Frobq + Frobq]

]
= `4

1`2.

I Ascend the (`1, `1, `1)-isogeny graph.

Jac(C)

A0

I Locally at `1, OK0 ⊆ End(A0).

I OK0 ⊆ End(A1).
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Constructing an isogeny from a hyperelliptic to a
plane quartic (simplified)

I OK0 ⊆ End(A1).
I Suppose

[
OK : OK0 [Frobq,Frobq]

]
= 1. Then do not need to

ascend any cyclic-isogeny graphs as End(A′) = OK.

I Do a random walk on the union of several cyclic-µ-isogeny
graphs. (With our conditions, these graphs are disjoint
unions of cycles).

I The resulting abelian variety A2 is uniformly random
within the top layer of all (`, `, `)-isogeny graphs.

33 / 39



Constructing an isogeny from a hyperelliptic to a
plane quartic (simplified)

I OK0 ⊆ End(A1).
I Suppose

[
OK : OK0 [Frobq,Frobq]

]
= 1. Then do not need to

ascend any cyclic-isogeny graphs as End(A′) = OK.
I Do a random walk on the union of several cyclic-µ-isogeny

graphs. (With our conditions, these graphs are disjoint
unions of cycles).

I The resulting abelian variety A2 is uniformly random
within the top layer of all (`, `, `)-isogeny graphs.

33 / 39



Constructing an isogeny from a hyperelliptic to a
plane quartic (simplified)

I A2 is uniformly random within the top layer of sufficiently
many (`, `, `)-isogeny graphs.

I Vast majority of abelian varieties are in the bottom layer.

I Descend the (`1, `1, `1)-isogeny graph.

I Locally at `1, EndR(A3) = Z[Frobq + Frobq].
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Constructing an isogeny from a hyperelliptic to a
plane quartic (simplified)

I A2 is uniformly random within the top layer of sufficiently
many (`, `, `)-isogeny graphs.

I Vast majority of abelian varieties are in the bottom layer.
I Descend the (`1, `1, `1)-isogeny graph.
I Descend the (`2, `2, `2)-isogeny graph.

A3

A4

I Locally at `1, EndR(A3) = Z[Frobq + Frobq].
I A4 is a sufficiently random node; it is plane quartic with

high probability.
(modulo many details.)
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Known applications of isogeny graphs of abelian
varieties

I We can use random sampling on isogeny graphs to attack
DLP for a high percentage of hyperelliptic genus 3 curves
under Heuristic H.

I Flynn and Ti [FT19] recently showed that an SIDH-style
algorithm can theoretically be carried out with (2, 2)- and
(3, 3)-isogeny graphs of supersingular two-dimensional
abelian varieties over Fq.

Both of these applications still need efficient implementations
of isogenies of abelian varieties.
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What don’t we know?

I Efficient implementations of both cyclic isogenies and (`, `)
or (`, `, `)-isogenies are needed.

I Proof and/or more precise statement of Heuristic H is also
needed.

I Given that genus 2 arithmetic is less memory heavy and as
efficient as elliptic curve arithmetic, computing isogenies
may follow the same pattern?

I We only covered some cases of structure theorems for
abelian varieties: much more to understand!

I There are more options for creating useful graphs with
more choices of abelian variety
 new (maybe post-quantum) applications?

36 / 39



What don’t we know?

I Efficient implementations of both cyclic isogenies and (`, `)
or (`, `, `)-isogenies are needed.

I Proof and/or more precise statement of Heuristic H is also
needed.

I Given that genus 2 arithmetic is less memory heavy and as
efficient as elliptic curve arithmetic, computing isogenies
may follow the same pattern?

I We only covered some cases of structure theorems for
abelian varieties: much more to understand!

I There are more options for creating useful graphs with
more choices of abelian variety
 new (maybe post-quantum) applications?

36 / 39



What don’t we know?

I Efficient implementations of both cyclic isogenies and (`, `)
or (`, `, `)-isogenies are needed.

I Proof and/or more precise statement of Heuristic H is also
needed.

I Given that genus 2 arithmetic is less memory heavy and as
efficient as elliptic curve arithmetic, computing isogenies
may follow the same pattern?

I We only covered some cases of structure theorems for
abelian varieties: much more to understand!

I There are more options for creating useful graphs with
more choices of abelian variety
 new (maybe post-quantum) applications?

36 / 39



What don’t we know?

I Efficient implementations of both cyclic isogenies and (`, `)
or (`, `, `)-isogenies are needed.

I Proof and/or more precise statement of Heuristic H is also
needed.

I Given that genus 2 arithmetic is less memory heavy and as
efficient as elliptic curve arithmetic, computing isogenies
may follow the same pattern?

I We only covered some cases of structure theorems for
abelian varieties: much more to understand!

I There are more options for creating useful graphs with
more choices of abelian variety
 new (maybe post-quantum) applications?

36 / 39



What don’t we know?

I Efficient implementations of both cyclic isogenies and (`, `)
or (`, `, `)-isogenies are needed.

I Proof and/or more precise statement of Heuristic H is also
needed.

I Given that genus 2 arithmetic is less memory heavy and as
efficient as elliptic curve arithmetic, computing isogenies
may follow the same pattern?

I We only covered some cases of structure theorems for
abelian varieties: much more to understand!

I There are more options for creating useful graphs with
more choices of abelian variety
 new (maybe post-quantum) applications?

36 / 39



Further reading

Background on (hyper)elliptic curves:
I Silverman, The Arithmetic of Elliptic Curves

https://www.springer.com/gp/book/9780387094939

I Cassels and Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of
Genus 2
https://doi.org/10.1017/CBO9780511526084

I Avanzi, Cohen, Doche, Frey, Lange, Nguyen, and Vercauteren,
Handbook of Hyperelliptic Curve Cryptography
https://www.hyperelliptic.org/HEHCC/

I Sutherland, Isogeny volcanoes
https://arxiv.org/abs/1208.5370
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Further reading

Mentioned in this presentation:
BCR10 Bisson, Cosset, and Robert, AVIsogenies (2010)

http://avisogenies.gforge.inria.fr/

BJW17 Brooks, Jetchev, and Wesolowski, Isogeny graphs of ordinary abelian
varieties (2017)
https://arxiv.org/abs/1609.09793

C18 Costello, Computing supersingular isogenies on Kummer surfaces (2018)
https://eprint.iacr.org/2018/850

D06 Diem, An Index Calculus Algorithm for Plane Curves of Small Degree (2006)
https://link.springer.com/chapter/10.1007/11792086_38

DJRV17 Dudeanu, Jetchev, Robert, and Vuille, Cyclic Isogenies for Abelian Varieties
with Real Multiplication (2017)
https://arxiv.org/abs/1710.05147

FT19 Flynn and Ti, Genus Two Isogeny Cryptography (2019)
https://eprint.iacr.org/2019/177
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Further reading
Mentioned in this presentation (contd.):

JW17 Jetchev and Wesolowski, Horizontal isogeny graphs of ordinary abelian
varieties and the discrete logarithm problem (2017)
https://arxiv.org/abs/1506.00522

JV10 Joux and Vitse, Cover and Decomposition Index Calculus on Elliptic Curves
made practical (2010)
https://eprint.iacr.org/2011/020.pdf

K96 Kohel, Endomorphism rings of elliptic curves over finite fields (PhD thesis)
(1996)
http://iml.univ-mrs.fr/~kohel/pub/thesis.pdf

M18 Martindale, Isogeny graphs, modular polynomials, and applications (PhD
thesis) (2018)
http://www.martindale.info/research/Thesis.pdf

RS17 Renes and Smith, qDSA: Small and Secure Digital Signatures with
Curve-based Diffie-Hellman Key Pairs (2017)
https://eprint.iacr.org/2017/518

S08 Smith, Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3
Hyperelliptic Curves (2008)
https://arxiv.org/abs/0806.2995
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