Cryptography and quantum computers: Where do we stand?

Dr Chloe Martindale

Lecturer in Cryptography, University of Bristol

ACE-CSR Winter School, UK, 14th December 2020

in association with National Cyber Security Centre

What is this all about?

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Problems:

- Communication channels store and spy on our data
- Communication channels are modifying our data

Cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Problems:

- Communication channels store and spy on our data
- ► Communication channels are modifying our data

Goals:

- Confidentiality despite Eve's espionage.
- Integrity: recognising Eve's espionage.

(Slide mostly stolen from Tanja Lange)

Post-quantum cryptography

Sender Channel with eavesdropper 'Eve' Receiver

Post-quantum cryptography

Sender Channel with eavesdropper 'Eve' Receiver

- Eve has a quantum computer.
- ► Harry and Meghan don't have a quantum computer.

(Slide mostly stolen from Tanja Lange)

 In practise, crypto relies on a mix of asymmetric and symmetric cryptography.

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.
 ~> reduces security of current symmetric algorithms.

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.
 will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.
 ~> reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in asymmetric cryptography with something quantum-resistant.

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

 Harry and Meghan agree on a secret key s, then they can use that to encrypt their messages.

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

- Harry and Meghan agree on a secret key s, then they can use that to encrypt their messages.
- Eve sees n^a and n^b , but can't find a, b, or s.

Public parameters:

- a prime p (experts: uses \mathbb{F}_p^* , today also elliptic curves)
- a number $n \pmod{p}$ (nonexperts: think of an integer less than p)

Ideas to replace the discrete logarithm problem:

 Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
 Fastest encryption, huge keys, slow signatures.

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions.
 Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves.
 Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
 Fastest encryption, huge keys, slow signatures.
- Multivariate signatures: based on solving simulateneous multivariate equations.
 Short signatures, large public keys, slow.

(Slide mostly stolen from Tanja Lange)

Problem: It is trivial to find paths (subtract coordinates). What to do?

Case study: Isogenies. Big picture $\,\wp$

► <u>Isogenies</u> are a source of exponentially-sized graphs.

Case study: Isogenies. Big picture $\,\wp$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.

Case study: Isogenies. Big picture $\,\wp$

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.

Case study: Isogenies. Big picture \wp

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.

Case study: Isogenies. Big picture \wp

- ► <u>Isogenies</u> are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths.

Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:

Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:

Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:

Case study: Key exchange from isogenies

At this time, there are two families of systems:

SIKE https://sike.org

Case study: Key exchange from isogenies

Case study: Isogenies. Key exchange at the CSIDH Alice Bob [-, -, +, +] [+, -, +, +]

Where are we now?

 Post-quantum cryptography discussion dominated by NIST competition for standardization.

Where are we now?

- Post-quantum cryptography discussion dominated by NIST competition for standardization.
- This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough—and the time frame for transitioning to a new security protocol is sufficiently long and uncertain—that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.

Where are we now (according to NIST)?

The NIST not-a-competition:

- ► Had 82 submissions in 2017.
- ▶ 69 were accepted.
- 15 submissions currently in 3rd round, aiming for a total of 4 rounds.
- Aiming for standardization in 2022.

Where are we now (according to NIST)?

Round 1 (2016):

	Signatures	KEM
Code-based	2	17
Hased-based	3	0
Isogeny-based	1	1
Lattice-based	5	21
Multivariate	7	2
Others	2	4

(Slide mostly stolen from Dustin Moody)

Where are we now (according to NIST)?

Round 3 (2020):

	Signatures	KEM
Code-based	0	3
Hased-based	2	0
Isogeny-based	0	1
Lattice-based	2	5
Multivariate	2	0

Where are we now

Round 3 (2020):

	Signatures	KEM
Code-based	0	3
Hased-based	2	0
Isogeny-based	0	1
Lattice-based	2	5
Multivariate	2	0

The field of isogeny-based is still developing. Since 2016: 2018 CSIDH, allowing for non-interative key exchange 2019 CSI-FiSh, efficient compact signatures based on CSIDH 2020 SQI-Sign, 'efficient' compact signatures

• Many more schemes building on the above

What can we do?

We have:

- KEM/Encryption and signatures (many options from NIST competition, also more options since).
- Diffie-Hellman-style / non-interactive key exchange (only option is with CSIDH).

We don't have:

► Anything else! For example, privacy-preserving protocols.

Important open problems/research directions

Needed for many post-quantum candidates:

- ► Thorough cryptanalysis classical and quantum.
- Secure and efficient implementation (especially considering hardware limitations).
- Meaningful comparison between candidates (must come from comparable implementations).
- ► More advanced protocols.

Thank you!