# Cryptography and quantum computers: Where do we stand? 

Dr Chloe Martindale<br>Lecturer in Cryptography,<br>University of Bristol

ACE-CSR Winter School, UK, 14th December 2020


What is this all about?

## Cryptography



Sender Channel with eavesdropper 'Eve' Receiver

## Cryptography



## Problems:

- Communication channels store and spy on our data
- Communication channels are modifying our data


## Cryptography



## Post-quantum cryptography



Sender
Channel with eavesdropper 'Eve'
Receiver

## Post-quantum cryptography



- Eve has a quantum computer.
- Harry and Meghan don't have a quantum computer.
(Slide mostly stolen from Tanja Lange)


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true.


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true. $\rightsquigarrow$ will make current asymmetric algorithms obselete.


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true. $\rightsquigarrow$ will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks.


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true. $\rightsquigarrow$ will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks. $\rightsquigarrow$ reduces security of current symmetric algorithms.


## Why does Eve need a quantum computer?

- In practise, crypto relies on a mix of asymmetric and symmetric cryptography.
- Asymmetric cryptography typically relies on the 'discrete logarithm problem' being slow to solve: with Shor's quantum algorithm this is no longer true. $\rightsquigarrow$ will make current asymmetric algorithms obselete.
- Symmetric cryptography typically has less mathematical structure so quantum computers are less devastating, but Grover's quantum algorithm still speeds up attacks. $\rightsquigarrow$ reduces security of current symmetric algorithms.

Main goal: replace the use of the discrete logarithm problem in asymmetric cryptography with something quantum-resistant.

## Case study: Diffie-Hellman key exchange '76

Public parameters:

- a prime $p$ (experts: uses $\mathbb{F}_{p}^{*}$, today also elliptic curves)
- a number $n(\bmod p)($ nonexperts: think of an integer less than $p)$


## Case study: Diffie-Hellman key exchange '76

## Public parameters:

- a prime $p$ (experts: uses $\mathbb{F}_{p}^{*}$, today also elliptic curves)
- a number $n(\bmod p)($ nonexperts: think of an integer less than $p)$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Harry } \\
a \stackrel{\text { random }}{\leftrightarrows}\{0 \ldots p-1\}
\end{array} & \begin{array}{l}
\text { Meghan } \\
\text { random }
\end{array}\{\ldots p- \\
n^{a} & n^{b} \\
s:=\left(n^{b}\right)^{a} & s:=\left(n^{a}\right)^{b}
\end{array}
$$

## Case study: Diffie-Hellman key exchange '76

Public parameters:

- a prime $p$ (experts: uses $\mathbb{F}_{p}^{*}$, today also elliptic curves)
- a number $n(\bmod p)($ nonexperts: think of an integer less than $p)$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Harry } \\
a \stackrel{\text { random }}{\leftrightarrows}\{0 \ldots p-1\}
\end{array} & \begin{array}{c}
\text { Meghan } \\
\text { random }
\end{array} 0 \ldots p- \\
n^{a} & n^{b} \\
s:=\left(n^{b}\right)^{a} & s:=\left(n^{a}\right)^{b}
\end{array}
$$

- Harry and Meghan agree on a secret key s, then they can use that to encrypt their messages.


## Case study: Diffie-Hellman key exchange '76

Public parameters:

- a prime $p$ (experts: uses $\mathbb{F}_{p}^{*}$, today also elliptic curves)
- a number $n(\bmod p)($ nonexperts: think of an integer less than $p)$

$$
\begin{array}{cc}
\begin{array}{c}
\text { Harry } \\
a \stackrel{\text { Eve }}{\text { random }}\{0 \ldots p-1\}
\end{array} & \left.\begin{array}{l}
\text { Meghan } \\
\text { random }
\end{array} 0 \ldots p-1\right\} \\
n^{a} & n^{b} \\
s:=\left(n^{b}\right)^{a} & s:=\left(n^{a}\right)^{b}
\end{array}
$$

- Harry and Meghan agree on a secret key s, then they can use that to encrypt their messages.
- Eve sees $n^{a}$ and $n^{b}$, but can't find $a, b$, or $s$.


## Case study: Diffie-Hellman key exchange '76

Public parameters:

- a prime $p$ (experts: uses $\mathbb{F}_{p}^{*}$, today also elliptic curves)
- a number $n(\bmod p)($ nonexperts: think of an integer less than $p)$

- H Aeghan agree on a secret key $s$, then they can usd at to encrypt their messages.
- Eve sees $n^{a}$ and $n^{b}$, but can't find $a, b$, or $s$.


## Alternatives

Ideas to replace the discrete logarithm problem:

## Alternatives

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.


## Alternatives

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.


## Alternatives

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves. Smallest keys, slow encryption.


## Alternatives

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves. Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
Fastest encryption, huge keys, slow signatures.


## Alternatives

Ideas to replace the discrete logarithm problem:

- Code-based encryption: uses error correcting codes. Short ciphertexts, large public keys.
- Hash-based signatures: uses hard-to-invert functions. Well-studied security, small public keys.
- Isogeny-based encryption and signatures: based on finding maps between (elliptic) curves. Smallest keys, slow encryption.
- Lattice-based encryption and signatures: based on finding short vectors in high-dimensional lattices.
Fastest encryption, huge keys, slow signatures.
- Multivariate signatures: based on solving simulateneous multivariate equations.
Short signatures, large public keys, slow.
(Slide mostly stolen from Tanja Lange)


## Case study: Isogenies. Graph walking Diffie-Hellman?



## Case study: Isogenies. Graph walking Diffie-Hellman?



## Case study: Isogenies. Graph walking Diffie-Hellman?



Case study: Isogenies. Graph walking Diffie-Hellman?


## Case study: Isogenies. Big picture $\ominus$

- Isogenies are a source of exponentially-sized graphs.


## Case study: Isogenies. Big picture $\ominus$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.


## Case study: Isogenies. Big picture $\ominus$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.


## Case study: Isogenies. Big picture $\varnothing$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.


## Case study: Isogenies. Big picture $\ominus$

- Isogenies are a source of exponentially-sized graphs.
- We can walk efficiently on these graphs.
- Fast mixing: short paths to (almost) all nodes.
- No known efficient algorithms to recover paths from endpoints.
- Enough structure to navigate the graph meaningfully. That is: some well-behaved 'directions' to describe paths.


## Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:

## Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:


## Case study: Key exchange from isogenies

Components of the isogeny graphs look like this:


## Case study: Key exchange from isogenies

At this time, there are two families of systems:


CSIDH ['si;,said]
https://csidh.isogeny.org


SIKE
https://sike.org

## Case study: Key exchange from isogenies



## Case study: Isogenies. Key exchange at the CSIDH

| Alice | Bob |
| :---: | :---: |
| $[-,-,+,+]$ | $[+,-,+,+]$ |



## Where are we now?

- Post-quantum cryptography discussion dominated by NIST competition for standardization.


## Where are we now?

- Post-quantum cryptography discussion dominated by NIST competition for standardization.
- This initiative comes after a US report with:

Key Finding 10: Even if a quantum computer that can decrypt current cryptographic ciphers is more than a decade off, the hazard of such a machine is high enough-and the time frame for transitioning to a new security protocol is sufficiently long and uncertain-that prioritization of the development, standardization, and deployment of post-quantum cryptography is critical for minimizing the chance of a potential security and privacy disaster.

## Where are we now (according to NIST)?

The NIST not-a-competition:

- Had 82 submissions in 2017.
- 69 were accepted.
- 15 submissions currently in 3rd round, aiming for a total of 4 rounds.
- Aiming for standardization in 2022.


## Where are we now (according to NIST)?

Round 1 (2016):

|  | Signatures | KEM |
| :--- | :---: | :---: |
| Code-based | 2 | 17 |
| Hased-based | 3 | 0 |
| Isogeny-based | 1 | 1 |
| Lattice-based | 5 | 21 |
| Multivariate | 7 | 2 |
| Others | 2 | 4 |

(Slide mostly stolen from Dustin Moody)

## Where are we now (according to NIST)?

Round 3 (2020):

|  | Signatures | KEM |
| :--- | :---: | :---: |
| Code-based | 0 | 3 |
| Hased-based | 2 | 0 |
| Isogeny-based | 0 | 1 |
| Lattice-based | 2 | 5 |
| Multivariate | 2 | 0 |

## Where are we now

Round 3 (2020):

|  | Signatures | KEM |
| :--- | :---: | :---: |
| Code-based | 0 | 3 |
| Hased-based | 2 | 0 |
| Isogeny-based | 0 | 1 |
| Lattice-based | 2 | 5 |
| Multivariate | 2 | 0 |

The field of isogeny-based is still developing. Since 2016:
2018 CSIDH, allowing for non-interative key exchange
2019 CSI-FiSh, efficient compact signatures based on CSIDH
2020 SQI-Sign, 'efficient' compact signatures

- Many more schemes building on the above


## What can we do?

We have:

- KEM/Encryption and signatures (many options from NIST competition, also more options since).
- Diffie-Hellman-style / non-interactive key exchange (only option is with CSIDH).

We don't have:

- Anything else! For example, privacy-preserving protocols.


## Important open problems/research directions

Needed for many post-quantum candidates:

- Thorough cryptanalysis - classical and quantum.
- Secure and efficient implementation (especially considering hardware limitations).
- Meaningful comparison between candidates (must come from comparable implementations).
- More advanced protocols.


## Thank you!

